精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法>

      初二數(shù)學(xué)下冊知識點總結(jié)歸納

      時間: 欣怡1112 分享

        初二是個很關(guān)鍵的時期,尤其是數(shù)學(xué)的學(xué)習(xí)!!勾股定理、四邊形、函數(shù),可謂重點重重,這些知識點一定要掌握牢固!下面是學(xué)習(xí)啦小編分享給大家的初二數(shù)學(xué)下冊知識點,希望大家喜歡!

        初二數(shù)學(xué)下冊知識點一

        一、函數(shù)及其相關(guān)概念

        1、變量與常量

        在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

        一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

        2、函數(shù)解析式

        用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

        使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

        3、函數(shù)的三種表示法及其優(yōu)缺點

        (1)解析法

        兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

        (2)列表法

        把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

        (3)圖像法:用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

        4、由函數(shù)解析式畫其圖像的一般步驟

        (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

        (2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點

        (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接

        正比例函數(shù)和一次函數(shù)

        1、正比例函數(shù)和一次函數(shù)的概念

        一般地,如果

        2、一次函數(shù)的圖像

        所有一次函數(shù)的圖像都是一條直線。

        3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

        一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。(如下圖)

        4. 正比例函數(shù)的性質(zhì)

        一般地,正比例函數(shù)y=kx有下列性質(zhì):

        (1)當(dāng)k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

        (2)當(dāng)k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

        5、一次函數(shù)的性質(zhì)

        一般地,一次函數(shù)y=kx+b有下列性質(zhì):

        (1)當(dāng)k>0時,y隨x的增大而增大

        (2)當(dāng)k<0時,y隨x的增大而減小

        6、正比例函數(shù)和一次函數(shù)解析式的確定

        確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k≠0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k≠0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。

        圖像分析:

        k>0,b>0,圖像經(jīng)過一、二、三象限,y隨x的增大而增大。

        k>0,b<0,圖像經(jīng)過一、三、四象限,y隨x的增大而增大。

        k<0,b>0, 圖像經(jīng)過一、二、四象限,y隨x的增大而減小

        k<0,b<0,圖像經(jīng)過二、三、四象限,y隨x的增大而減小。

        注:當(dāng)b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。

        初二數(shù)學(xué)下冊知識點二

        四邊形

        基本概念:

        四邊形,四邊形的內(nèi)角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.

        定理:中心對稱的有關(guān)定理

        1.關(guān)于中心對稱的兩個圖形是全等形.

        2.關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,被對稱中心平分.

        3.如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱.

        公式:

        1.S菱形 =1/2ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)

        2.S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)

        3.S梯形 =1/2(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)

        常識:

        1.若n是多邊形的邊數(shù),則對角線條數(shù)公式是:n(n-3)/2

        2.規(guī)則圖形折疊一般“出一對全等,一對相似”.

        3.如圖:平行四邊形、矩形、菱形、正方形的從屬關(guān)系.

        4.常見圖形中,

        僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形…… ;

        僅是中心對稱圖形的有:平行四邊形 …… ;

        是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 …… .

        注意:線段有兩條對稱軸.

        初二數(shù)學(xué)下冊知識點三

        函數(shù)及其相關(guān)概念

        1、變量與常量

        在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

        一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

        2、函數(shù)解析式

        用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

        使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

        3、函數(shù)的三種表示法及其優(yōu)缺點

        (1)解析法

        兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

        (2)列表法

        把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

        (3)圖像法

        用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

        4、由函數(shù)解析式畫其圖像的一般步驟

        (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

        (2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點

        (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

      猜你喜歡:

      1.八年級下冊政治知識點整理歸納

      2.初二歷史下冊知識點歸納梳理

      3.八年級下冊歷史每課知識點歸納

      4.初中數(shù)學(xué)重點知識點

      5.初中數(shù)學(xué)知識點全總結(jié)

      3800327