精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

      2017南昌數(shù)學(xué)中考模擬試題與答案(2)

      時(shí)間: 漫柔41 分享

        【分析】根據(jù)方差的意義:方差反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.觀察圖中的信息可知小華的方差較小,故甲的成績(jī)更加穩(wěn)定.

        【解答】解:由圖表明乙這8次成績(jī)偏離平均數(shù)大,即波動(dòng)大,而甲這8次成績(jī),分布比較集中,各數(shù)據(jù)偏離平均小,方差小,

        則S甲2

        故答案為:甲.

        13.某商品原來價(jià)格為m元,降價(jià)20%后價(jià)格為 0.8m 元.

        【考點(diǎn)】列代數(shù)式.

        【分析】降價(jià)后的價(jià)格是原價(jià)×(1﹣20%),即0.8m.

        【解答】解:(1﹣20%)m=0.8m.

        14.現(xiàn)在網(wǎng)購(gòu)越來越多地成為人們的一種消費(fèi)方式,在2016年的“雙11”網(wǎng)上促銷活動(dòng)中天貓和淘寶的支付交易額突破120700000000元,將120700000000用科學(xué)記數(shù)法表示為 1.207×1011 .

        【考點(diǎn)】科學(xué)記數(shù)法—表示較大的數(shù).

        【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).本題中120700000000有12位整數(shù),n=12﹣1=11.

        【解答】解:120700000000=1.207×1011.

        故答案為:1.207×1011.

        15.如圖,將一副直角三角板如圖放置,若∠AOD=18°,則∠BOC的度數(shù)為 162° .

        【考點(diǎn)】余角和補(bǔ)角.

        【分析】先求出∠COA和∠BOD的度數(shù),代入∠BOC=∠COA+∠AOD+∠BOD求出即可.

        【解答】解:∵∠AOD=18°,∠COD=∠AOB=90°,

        ∴∠COA=∠BOD=90°﹣18°=72°,

        ∴∠BOC=∠COA+∠AOD+∠BOD=72°+18°+72°=162°.

        故答案為:162°.

        16.一次函數(shù)y=kx+2(k為常數(shù),且k≠0)的圖象如圖所示,則k的可能值為 ﹣2 .(寫一個(gè)即可)

        【考點(diǎn)】一次函數(shù)圖象與系數(shù)的關(guān)系.

        【分析】觀察圖形可知OB

        【解答】解:觀察圖形可知:一次函數(shù)圖象經(jīng)過第一、二、四象限,OB

        ∴k<0.

        當(dāng)x=0時(shí),y=kx+2=2,

        ∴OA=2,

        令OB=1,則點(diǎn)B(1,0),

        將(1,0)代入y=kx+2,

        0=k+2,解得:k=﹣2.

        故答案為:﹣2.

        17.如圖,點(diǎn)P是▱ABCD邊AB上的一點(diǎn),射線CP交DA的延長(zhǎng)線于點(diǎn)E,請(qǐng)從圖中找出一對(duì)相似三角形: △EAP∽△EDC(答案不唯一) .

        【考點(diǎn)】相似三角形的判定;平行四邊形的性質(zhì).

        【分析】利用相似三角形的判定方法以及平行四邊形的性質(zhì)得出即可.

        【解答】解:∵四邊形ABCD是平行四邊形,

        ∴AB∥DC,AD∥BC,

        ∴△EAP∽△EDC,△EAP∽△CBP,

        ∴△EDC∽△CBP,

        故答案為:△EAP∽△EDC(答案不唯一).

        18.如圖,在⊙O中,OB為半徑,AB是⊙O的切線,OA與⊙O相交于點(diǎn)C,∠A=30°,OA=8,則陰影部分的面積是 8 ﹣ π .

        【考點(diǎn)】切線的性質(zhì);扇形面積的計(jì)算.

        【分析】首先證明△AOB是直角三角形,再根據(jù)S陰影部分=S△AOB﹣S扇形OBC計(jì)算即可.

        【解答】解:∵AB是⊙O的切線,

        ∴OB⊥AB,

        ∴∠OBA=90°,

        ∵∠A=30°,OA=8,

        ∴OB= OA=4,AB= OB=4 ,∠BOC=60°,

        ∴S陰影部分=S△AOB﹣S扇形OBC= ×4×4 ﹣ •π•42=8 ﹣ π,

        故答案為8 ﹣ π.

        三、解答題(本大題共有3個(gè)小題,每小題8分,共24分)

        19.計(jì)算:﹣32﹣( )﹣1+2sin30°.

        【考點(diǎn)】實(shí)數(shù)的運(yùn)算;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.

        【分析】原式利用乘方的意義,負(fù)整數(shù)指數(shù)冪,以及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.

        【解答】解:原式=﹣9﹣2+1=﹣10.

        20.先化簡(jiǎn),再求值:(2a+b)2﹣2a(2b+a),其中a=﹣1,b= .

        【考點(diǎn)】整式的混合運(yùn)算—化簡(jiǎn)求值.

        【分析】先將原式按完全平方公式和乘法分配律進(jìn)行化簡(jiǎn),然后代入求值即可.

        【解答】解:原式=4a2+4ab+b2﹣4ab﹣2a2

        =2a2+b2,

        當(dāng)a=﹣1,b= ,

        ∴原式=2+2017=2019

        21.如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=DF,求證:AE=CF.

        【考點(diǎn)】平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).

        【分析】根據(jù)平行四邊形性質(zhì)得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結(jié)論.

        【解答】證明:∵四邊形ABCD是平行四邊形,

        ∴AD∥BC,且AD=BC,

        ∴AF∥EC,

        ∵BE=DF,

        ∴AF=EC,

        ∴四邊形AECF是平行四邊形,

        ∴AE=CF.

        四、解答題(本大題共有3小題,每小題8分,共24分)

        22.為了增強(qiáng)學(xué)生的身體素質(zhì),教育部門規(guī)定學(xué)生每天參加體育鍛煉時(shí)間不少于1小時(shí),為了解學(xué)生參加體育鍛煉的情況,抽樣調(diào)查了900名學(xué)生每天參加體育鍛煉的時(shí)間,并將調(diào)查結(jié)果制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

        (1)求參加體育鍛煉時(shí)間為1小時(shí)的人數(shù).

        (2)求參加體育鍛煉時(shí)間為1.5小時(shí)的人數(shù).

        (3)補(bǔ)全頻數(shù)分布直方圖.

        (4)這次調(diào)查參加體育鍛煉時(shí)間的中位數(shù)是 1 .

        【考點(diǎn)】頻數(shù)(率)分布直方圖;扇形統(tǒng)計(jì)圖;中位數(shù).

        【分析】(1)根據(jù)時(shí)間是2小時(shí)的有90人,占10%,據(jù)此即可求得總?cè)藬?shù),利用總?cè)藬?shù)乘以百分比即可求得時(shí)間是1小時(shí)的一組的人數(shù);

        (2)總數(shù)減去其它各組的人數(shù)即可求解;

        (3)根據(jù)(1)、(2)中的結(jié)果即可補(bǔ)全分布直方圖;

        (3)根據(jù)中位數(shù)的定義就是大小處于中間位置的數(shù),據(jù)此即可求解.

        【解答】解:(1)調(diào)查的總?cè)藬?shù)是好:90÷10%=900(人),

        鍛煉時(shí)間是1小時(shí)的人數(shù)是:900×40%=360(人);

        (2)這次調(diào)查參加體育鍛煉時(shí)間為1.5小時(shí)的人數(shù)是:900﹣270﹣360﹣90=180(人);

        (3)補(bǔ)全頻數(shù)分布直方圖如下:

        (4)∵共有900個(gè)數(shù)據(jù),

        ∴其中位數(shù)是第450、451個(gè)數(shù)據(jù)的平均數(shù),鍛煉的中位數(shù)是:1小時(shí),

        故答案為:1.

        23.從邵陽市到長(zhǎng)沙的高鐵列車?yán)锍瘫绕湛炝熊嚴(yán)锍炭s短了75千米,運(yùn)行時(shí)間減少了4小時(shí),已知邵陽市到長(zhǎng)沙的普快列車?yán)锍虨?06千米,高鐵列車平均時(shí)速是普快列車平均時(shí)速的3.5倍.

        (1)求高鐵列車的平均時(shí)速;

        (2)某日劉老師從邵陽火車南站到長(zhǎng)沙市新大新賓館參加上午11:00召開的會(huì)議,如果他買到當(dāng)日上午9:20從邵陽市火車站到長(zhǎng)沙火車南站的高鐵票,而且從長(zhǎng)沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會(huì)之前趕到嗎?

        【考點(diǎn)】分式方程的應(yīng)用.

        【分析】(1)設(shè)普快的平均時(shí)速為x千米/小時(shí),高鐵列車的平均時(shí)速為3.5x千米/小時(shí),根據(jù)題意可得,高鐵走千米比普快走306千米時(shí)間減少了4小時(shí),據(jù)此列方程求解;

        (2)求出劉老師所用的時(shí)間,然后進(jìn)行判斷.

        【解答】解:(1)設(shè)普快的平均時(shí)速為x千米/小時(shí),高鐵列車的平均時(shí)速為3.5x千米/小時(shí),

        由題意得, ﹣ =4,

        解得:x=60,

        經(jīng)檢驗(yàn),x=60是原分式方程的解,且符合題意,

        則3.5x=210,

        答:高鐵列車的平均時(shí)速為210千米/小時(shí);

        (2)÷(3.5×60)=1.1小時(shí)即66分鐘,

        66+20=86分鐘,

        而9:20到11:00相差100分鐘,

        ∵100>86,故在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會(huì)之前趕到.

        24.為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測(cè)得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長(zhǎng).(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)

        【考點(diǎn)】解直角三角形的應(yīng)用.

        【分析】首先過點(diǎn)C作CD⊥AB于D,然后在Rt△BCD中,利用三角函數(shù)的知識(shí),求得BD,CD的長(zhǎng),繼而在Rt△ACD中,利用∠CAB的正切求得AD的長(zhǎng),繼而求得答案.

        【解答】解:過點(diǎn)C作CD⊥AB于D,

        ∵BC=200m,∠CBA=30°,

        ∴在Rt△BCD中,CD= BC=100m,BD=BC•cos30°=200× =100 ≈173(m),

        ∵∠CAB=54°,

        在Rt△ACD中,AD= ≈ ≈72(m),

        ∴AB=AD+BD=173+72≈245(m).

        答:隧道AB的長(zhǎng)為245m.

        五、解答題(本大題有2小題,其中25題8分,26題10分,共18分)

        25.(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點(diǎn)E,將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部,將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.

        (2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

        【考點(diǎn)】翻折變換(折疊問題);矩形的性質(zhì).

        【分析】(1)連接EF,則AE=EG,HL可證明Rt△EGF≌Rt△EDF,根據(jù)全等三角形的性質(zhì)即可求解;

        (2)設(shè)FC=x,BC=y,則有GF=x,AD=y.根據(jù)DC=2FC得到DF=x,DC=AB=BG=2x,BF=BG+GF=3x,然后利用勾股定理得到y(tǒng)與x之間關(guān)系,從而求得兩條線段的比.

        【解答】解:(1)同意.連接EF,則∠EGF=∠D=90°.

        ∵點(diǎn)E是AD的中點(diǎn),

        ∴由折疊的性質(zhì)知,EG=ED

        在Rt△EGF和Rt△EDF中,

        ,

        ∴Rt△EGF≌Rt△EDF(HL).

        ∴GF=DF;

        (2)由(1)知,GF=DF.設(shè)FC=x,BC=y,則有GF=x,AD=y.

        ∵DC=2FC,

        ∴DF=x,DC=AB=BG=2x,

        ∴BF=BG+GF=3x.

        在Rt△BCF中,由勾股定理得:BC2+CF2=BF2,即y2+x2=(3x)2.

        ∴y=2 x

        ∴ = = .

        26.如圖,拋物線y=x2+bx+c(b、c為常數(shù))與x軸相交于點(diǎn)A(﹣1,0)、B(3,0),與y軸相交于點(diǎn)C,其對(duì)稱軸與x軸相交于點(diǎn)D,作直線BC.

        (1)求拋物線的解析式.

        (2)設(shè)點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn).

       ?、偃鐖D①,若點(diǎn)P為拋物線的頂點(diǎn),求△PBC的面積.

       ?、谑欠翊嬖邳c(diǎn)P使△PBC的面積為6?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

        【考點(diǎn)】二次函數(shù)綜合題.

        【分析】(1)把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式,可求得b、c的值,可求得拋物線解析式;

        (2)①由拋物線解析式可求得P、C的坐標(biāo),可求得直線BC解析式,設(shè)對(duì)稱軸交直線BC于點(diǎn)E,則可求得E點(diǎn)坐標(biāo),可求得PE的長(zhǎng),則可求得△PBC的面積;②設(shè)P(1,t),則可用t表示出△PBC的面積,可得到t的方程,則可求得P點(diǎn)坐標(biāo).

        【解答】解:

        (1)∵拋物線y=x2+bx+c(b、c為常數(shù))與x軸相交于點(diǎn)A(﹣1,0)、B(3,0),

        ∴ ,解得 ,

        ∴拋物線解析式為y=x2﹣2x﹣3;

        (2)①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

        ∴P(1,4),且C(0,﹣3),

        設(shè)直線BC解析式為y=kx+m,則有 ,解得 ,

        ∴直線BC解析式為y=x﹣3,

        設(shè)對(duì)稱軸交BC于點(diǎn)E,如圖1,

        則E(1,﹣2),

        ∴PE=﹣2﹣(﹣4)=2,

        ∴S△PBC= PE•OB= ×3×2=3;

       ?、谠O(shè)P(1,t),由①可知E(1,﹣2),

        ∴PE=|t+2|,

        ∴S△PBC= OB•PE= |t+2|,

        ∴ |t+2|=6,解得t=2或t=﹣6,

        ∴P點(diǎn)坐標(biāo)為(1,2)或(1,﹣6),

        即存在滿足條件的點(diǎn)P,其坐標(biāo)為(1,2)或(1,﹣6).

      猜你喜歡:

      1.2017中考數(shù)學(xué)模擬試題附答案

      2.2017年數(shù)學(xué)中考模擬試題附答案

      3.2017年中考數(shù)學(xué)模擬考試試題含答案

      4.2017中考數(shù)學(xué)模擬考試試題帶答案

      5.2017中考數(shù)學(xué)模擬試卷帶答案

      6.2017中考數(shù)學(xué)模擬試卷及答案

      2017南昌數(shù)學(xué)中考模擬試題與答案(2)

      【分析】根據(jù)方差的意義:方差反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.觀察圖中的信息可知小華的方差較小,故甲的成績(jī)更加
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式

      精選文章

      • 2017牡丹江中考數(shù)學(xué)模擬試卷及答案
        2017牡丹江中考數(shù)學(xué)模擬試卷及答案

        學(xué)生都想在中考得到高分,只要多做中考數(shù)學(xué)模擬試題,多加復(fù)習(xí)就可以得到一定提升,以下是學(xué)習(xí)啦小編為你整理的2017牡丹江中考數(shù)學(xué)模擬試題及答案,

      • 2017梅州中考數(shù)學(xué)練習(xí)試題答案
        2017梅州中考數(shù)學(xué)練習(xí)試題答案

        學(xué)生在中考數(shù)學(xué)的備考中不知道該如何有效復(fù)習(xí),其實(shí)學(xué)生要多做中考數(shù)學(xué)練習(xí)真題,多加復(fù)習(xí)才可以拿到好成績(jī),以下是學(xué)習(xí)啦小編為你整理的2017梅州中

      • 2017眉山中考數(shù)學(xué)模擬試題及答案
        2017眉山中考數(shù)學(xué)模擬試題及答案

        考生想在中考數(shù)學(xué)中得到高分就要多做中考數(shù)學(xué)模擬真題,為了幫助考生們,以下是學(xué)習(xí)啦小編為你整理的2017眉山中考數(shù)學(xué)模擬真題及答案,希望能幫到你

      • 2017茂名中考數(shù)學(xué)模擬試卷及答案
        2017茂名中考數(shù)學(xué)模擬試卷及答案

        中考的數(shù)學(xué)要想取得提升就需要了解中考數(shù)學(xué)模擬試題,學(xué)生備考的時(shí)候掌握中考數(shù)學(xué)模擬試題自然能考得好。以下是學(xué)習(xí)啦小編為你整理的2017茂名中考數(shù)

      32850