精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數學 > 人教版高一數學函數知識點(2)

      人教版高一數學函數知識點(2)

      時間: 鳳婷983 分享

      人教版高一數學函數知識點

        當h>0,k>0時,將拋物線y=ax’2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)’2+k的圖象;

        當h>0,k<0時,將拋物線y=ax’2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

        當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

        當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

        因此,研究拋物線y=ax’2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)’2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax’2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b’2]/4a).

        3.拋物線y=ax’2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

        4.拋物線y=ax’2+bx+c的圖象與坐標軸的交點:

        (1)圖象與y軸一定相交,交點坐標為(0,c);

        (2)當△=b’2-4ac>0,圖象與x軸交于兩點A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax’2+bx+c=0

        (a≠0)的兩根.這兩點間的距離AB=|x₂-x₁|

        當△=0.圖象與x軸只有一個交點;

        當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

        5.拋物線y=ax’2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b’2)/4a.

        頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

        6.用待定系數法求二次函數的解析式

        (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

        y=ax’2+bx+c(a≠0).

        (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)’2+k(a≠0).

        (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).

        7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

        反比例函數

        形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

        自變量x的取值范圍是不等于0的一切實數。

        反比例函數圖像性質:

        反比例函數的圖像為雙曲線。

        由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

        另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

        當K>0時,反比例函數圖像經過一,三象限,是減函數

        當K<0時,反比例函數圖像經過二,四象限,是增函數

        反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

        對數函數

        對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規(guī)定,同樣適用于對數函數。

        右圖給出對于不同大小a所表示的函數圖形:

        可以看到對數函數的圖形只不過的指數函數的圖形的關于直線y=x的對稱圖形,因為它們互為反函數。

        (1)對數函數的定義域為大于0的實數集合。

        (2)對數函數的值域為全部實數集合。

        (3)函數總是通過(1,0)這點。

        (4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。

        (5)顯然對數函數無界。

        指數函數

        指數函數的一般形式為,從上面我們對于冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

        如圖所示為a的不同大小影響函數圖形的情況。

        可以看到:

        (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

        (2)指數函數的值域為大于0的實數集合。

        (3)函數圖形都是下凹的。

        (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

        (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

        (6)函數總是在某一個方向上無限趨向于X軸,永不相交。

        (7)函數總是通過(0,1)這點。

        (8)顯然指數函數無界。

        奇偶性

        注圖:(1)為奇函數(2)為偶函數

        1.定義

        一般地,對于函數f(x)

        (1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

        (2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

        (3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

        (4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

        說明:①奇、偶性是函數的整體性質,對整個定義域而言

        ②奇、偶函數的定義域一定關于原點對稱,如果一個函數的定義域不關于原點對稱,則這個函數一定不是奇(或偶)函數。

        (分析:判斷函數的奇偶性,首先是檢驗其定義域是否關于原點對稱,然后再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

       ?、叟袛嗷蜃C明函數是否具有奇偶性的根據是定義

        2.奇偶函數圖像的特征:

        定理奇函數的圖像關于原點成中心對稱圖表,偶函數的圖象關于y軸或軸對稱圖形。

        f(x)為奇函數《==》f(x)的圖像關于原點對稱

        點(x,y)→(-x,-y)

        奇函數在某一區(qū)間上單調遞增,則在它的對稱區(qū)間上也是單調遞增。

        偶函數在某一區(qū)間上單調遞增,則在它的對稱區(qū)間上單調遞減。

        3.奇偶函數運算

        (1).兩個偶函數相加所得的和為偶函數.

        (2).兩個奇函數相加所得的和為奇函數.

        (3).一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.

        (4).兩個偶函數相乘所得的積為偶函數.

        (5).兩個奇函數相乘所得的積為偶函數.

        (6).一個偶函數與一個奇函數相乘所得的積為奇函數.
      看了<人教版高一數學函數知識點>的人還看了:

      1.高一數學必修一函數必背知識點整理

      2.高一數學函數知識點歸納

      3.高一新人教版數學函數與方程知識點

      4.新人教版高一數學函數與方程知識要點

      5.高一人教版數學必修一第一章知識點整理

      6.高一數學函數的基本性質知識點梳理

      2847465