數學初一知識點總結
在平時學習中的困難莫過于一節(jié)一節(jié)的臺階,雖然臺階很陡,但只要一步一個腳印的踏,攀登一層一層的臺階,才能實現學習的理想。下面小編為大家?guī)頂祵W初一知識點總結,希望對您有所幫助!
數學初一知識點總結
一、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
二、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的'冪叫做同底數冪。
3、同底數冪乘法的運算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
三、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
四、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
數學初一知識點梳理
知識點、概念總結
1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)
(3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果x>y,那么yy;(對稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實數或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數)
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質2、3)
(2)去括號
(3)移項(運用不等式性質1)
(4)合并同類項
(5)將未知數的系數化為1(運用不等式性質2、3)
(6)有些時候需要在數軸上表示不等式的解集
10.一元一次不等式與一次函數的綜合運用:
一般先求出函數表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成
了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數軸)
(3)用代數符號語言來表示公共部分。(也可以說成是下結論)
13.解不等式的訣竅
(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式組的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式組的解集是X<-6
(3)大于小于交叉取中間;
(4)無公共部分分開無解了;
14.解不等式組的口訣
(1)同大取大
例如,x>2,x>3,不等式組的解集是X>3
(2)同小取小
例如,x<2,x<3,不等式組的解集是X<2
(3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式組無解
15.應用不等式組解決實際問題的步驟
(1)審清題意
(2)設未知數,根據所設未知數列出不等式組
(3)解不等式組
(4)由不等式組的解確立實際問題的解
(5)作答
16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。
初一數學知識點歸納
初一數學下冊期末考試知識點總結一(蘇教版)
第七章 平面圖形的認識(二) 1
第八章 冪的運算 2
第九章 整式的乘法與因式分解 3
第十章 二元一次方程組 4
第十一章 一元一次不等式 4
第十二章 證明 9
第七章 平面圖形的認識(二)
一、知識點:
1、“三線八角”
① 如何由線找角:一看線,二看型。
同位角是“F”型;
內錯角是“Z”型;
同旁內角是“U”型。
② 如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。
簡述:平行于同一條直線的兩條直線平行。
補充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。
簡述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質:
判定定理 性質定理
條件 結論 條件 結論
同位角相等 兩直線平行 兩直線平行 同位角相等
內錯角相等 兩直線平行 兩直線平行 內錯角相等
同旁內角互補 兩直線平行 兩直線平行 同旁內角互補
4、圖形平移的性質:
圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關系:
三角形的任意兩邊之和大于第三邊;
三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,
則
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:①三角形的高、角平分線、中線都是線段。
②高、角平分線、中線的應用。
7、三角形的內角和:
三角形的3個內角的和等于180°;
直角三角形的兩個銳角互余;
三角形的一個外角等于與它不相鄰的兩個內角的和;
三角形的一個外角大于與它不相鄰的任意一個內角。
8、多邊形的內角和:
n邊形的內角和等于(n-2)180°;
任意多邊形的外角和等于360°。
第八章 冪的運算
冪(p5