精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

      高二數(shù)學(xué)必考知識(shí)點(diǎn)

      時(shí)間: 贊銳20 分享

      越能愉快的學(xué)習(xí),產(chǎn)生快樂(lè)的感覺(jué)就越好。好希望每個(gè)人都能明白這個(gè)道理,能夠在有限的生命里懂得,在學(xué)習(xí)這無(wú)限的海洋中體會(huì)快樂(lè),在快樂(lè)中學(xué)習(xí)!下面是小編給大家?guī)?lái)的高二數(shù)學(xué)知識(shí)點(diǎn),希望大家能夠喜歡!

      高二數(shù)學(xué)必考知識(shí)點(diǎn)

      高二數(shù)學(xué)必考知識(shí)點(diǎn)

      1、圓的定義

      平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

      當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

      (3)求圓方程的方法:

      一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

      3、直線(xiàn)與圓的位置關(guān)系

      直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線(xiàn),圓,圓心到l的距離為,則有

      (2)過(guò)圓外一點(diǎn)的切線(xiàn):

      ①k不存在,驗(yàn)證是否成立

      ②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

      (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系

      通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

      設(shè)圓

      兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

      當(dāng)時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;

      當(dāng)時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內(nèi)公切線(xiàn)一條;

      當(dāng)時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);

      當(dāng)時(shí),兩圓內(nèi)切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);

      當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

      注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)

      圓的輔助線(xiàn)一般為連圓心與切線(xiàn)或者連圓心與弦中點(diǎn)

      高二數(shù)學(xué)必考知識(shí)點(diǎn)匯總

      1、向量的加法

      向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

      AB+BC=AC。

      a+b=(x+x',y+y')。

      a+0=0+a=a。

      向量加法的運(yùn)算律:

      交換律:a+b=b+a;

      結(jié)合律:(a+b)+c=a+(b+c)。

      2、向量的減法

      如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

      AB-AC=CB.即“共同起點(diǎn),指向被減”

      a=(x,y)b=(x',y')則a-b=(x-x',y-y').

      4、數(shù)乘向量

      實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

      當(dāng)λ>0時(shí),λa與a同方向;

      當(dāng)λ<0時(shí),λa與a反方向;

      當(dāng)λ=0時(shí),λa=0,方向任意。

      當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

      注:按定義知,如果λa=0,那么λ=0或a=0。

      實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(zhǎng)或壓縮。

      當(dāng)∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

      當(dāng)∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

      數(shù)與向量的乘法滿(mǎn)足下面的運(yùn)算律

      結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

      向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

      數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

      數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

      3、向量的的數(shù)量積

      定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

      定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

      向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

      向量的數(shù)量積的運(yùn)算率

      a·b=b·a(交換率);

      (a+b)·c=a·c+b·c(分配率);

      向量的數(shù)量積的性質(zhì)

      a·a=|a|的平方。

      a⊥b〈=〉a·b=0。

      |a·b|≤|a|·|b|。

      高二數(shù)學(xué)必考知識(shí)點(diǎn)大全

      等差數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱(chēng)這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。

      那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:

      將以上n-1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n-1個(gè)d,如此便得到上述通項(xiàng)公式。

      此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。

      值得說(shuō)明的是,前n項(xiàng)的和Sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問(wèn)題迎刃而解。

      等比數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱(chēng)這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為T(mén)n。

      那么,通項(xiàng)公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:

      a2=a1_q,

      a3=a2_q,

      a4=a3_q,

      ````````

      an=an-1_q,

      將以上(n-1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n-1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。

      此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1_n

      當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1_(1-q^(n))/(1-q).

      高二數(shù)學(xué)必考知識(shí)點(diǎn)相關(guān)文章:

      高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

      高二數(shù)學(xué)復(fù)習(xí)必背知識(shí)點(diǎn)歸納

      高二數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

      高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理

      高二數(shù)學(xué)知識(shí)點(diǎn)整理

      高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

      1069163