精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 >

      高二數(shù)學必修二的知識點總結

      時間: 贊銳20 分享

      在學習,要認真,仔細地規(guī)劃每一分鐘。認真投入到學習中。曾經有一位老師說,態(tài)度決定一切,要以良好的態(tài)度去面對學習。挑戰(zhàn)自己,相信自己。人一生的時間的有限的,時間不等人。以下是小編給大家整理的高二數(shù)學必修二的知識點總結,希望能幫助到你!

      高二數(shù)學必修二的知識點總結1

      一、直線與方程

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      (2)直線的斜率

      ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

      ②過兩點的直線的斜率公式:

      注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

      (3)直線方程

      ①點斜式:直線斜率k,且過點

      注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

      當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

      ②斜截式:,直線斜率為k,直線在y軸上的截距為b

      ③兩點式:()直線兩點,

      ④截矩式:

      其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

      ⑤一般式:(A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (5)直線系方程:即具有某一共同性質的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)垂直直線系

      垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (三)過定點的直線系

      (ⅰ)斜率為k的直線系:,直線過定點;

      (ⅱ)過兩條直線,的交點的直線系方程為

      (為參數(shù)),其中直線不在直線系中。

      (6)兩直線平行與垂直

      當,時,;

      注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

      (7)兩條直線的交點

      相交

      交點坐標即方程組的一組解。

      方程組無解;方程組有無數(shù)解與重合

      (8)兩點間距離公式:設是平面直角坐標系中的兩個點,

      (9)點到直線距離公式:一點到直線的距離

      (10)兩平行直線距離公式

      在任一直線上任取一點,再轉化為點到直線的距離進行求解。

      二、圓的方程

      1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

      2、圓的方程

      (1)標準方程,圓心,半徑為r;

      (2)一般方程

      當時,方程表示圓,此時圓心為,半徑為

      當時,表示一個點;當時,方程不表示任何圖形。

      (3)求圓方程的方法:

      一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

      另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

      3、直線與圓的位置關系:

      直線與圓的位置關系有相離,相切,相交三種情況:

      (1)設直線,圓,圓心到l的距離為,則有;;

      (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

      (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

      設圓,

      兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

      當時兩圓外離,此時有公切線四條;

      當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

      當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當時,兩圓內切,連心線經過切點,只有一條公切線;

      當時,兩圓內含;當時,為同心圓。

      注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

      圓的輔助線一般為連圓心與切線或者連圓心與弦中點

      三、立體幾何初步

      1、柱、錐、臺、球的結構特征

      (1)棱柱:

      幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

      (3)棱臺:

      幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

      幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

      (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

      幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

      (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、

      俯視圖(從上向下)

      注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

      3、空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

      ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

      4、柱體、錐體、臺體的表面積與體積

      (1)幾何體的表面積為幾何體各個面的面積的和。

      (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

      (3)柱體、錐體、臺體的體積公式

      (4)球體的表面積和體積公式:V=;S=

      4、空間點、直線、平面的位置關系

      公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。

      應用:判斷直線是否在平面內

      用符號語言表示公理1:

      公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

      符號:平面α和β相交,交線是a,記作α∩β=a。

      符號語言:

      公理2的作用:

      ①它是判定兩個平面相交的方法。

      ②它說明兩個平面的交線與兩個平面公共點之間的關系:交線_公共點。

      ③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

      公理3:經過不在同一條直線上的三點,有且只有一個平面。

      推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

      公理3及其推論作用:

      ①它是空間內確定平面的依據(jù)

      ②它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      空間直線與直線之間的位置關系

      ①異面直線定義:不同在任何一個平面內的兩條直線

      ②異面直線性質:既不平行,又不相交。

      ③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

      ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

      高二數(shù)學必修二的知識點總結2

      一、直線與圓:

      1、直線的傾斜角的范圍是

      在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

      過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

      3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

      ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

      4、直線與直線的位置關系:

      (1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

      5、點到直線的距離公式;

      兩條平行線與的距離是

      6、圓的標準方程:.⑵圓的一般方程:

      注意能將標準方程化為一般方程

      7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

      9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

      二、圓錐曲線方程:

      1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

      2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

      3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

      4、直線被圓錐曲線截得的弦長公式:

      5、注意解析幾何與向量結合問題:1、,.(1);(2).

      2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

      3、模的計算:|a|=.算??梢韵人阆蛄康钠椒?/p>

      4、向量的運算過程中完全平方公式等照樣適用:

      三、直線、平面、簡單幾何體:

      1、學會三視圖的分析:

      2、斜二測畫法應注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側)面積與體積公式:

      ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

      ⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      高二數(shù)學必修二的知識點總結3

      一、隨機事件

      主要掌握好(三四五)

      (1)事件的三種運算:并(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

      (2)四種運算律:交換律、結合律、分配律、德莫根律。

      (3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

      二、概率定義

      (1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;

      (3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

      (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

      三、概率性質與公式

      (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

      (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

      (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

      (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

      貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

      如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

      (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結果相互獨立)時,要考慮二項概率公式.


      高二數(shù)學必修二的知識點總結相關文章:

      高中數(shù)學必修二知識點總結

      高二數(shù)學必修二知識點總結

      高中數(shù)學必修2空間幾何體知識點歸納總結

      高中數(shù)學必修二知識點總結2020

      高中必修二數(shù)學知識點總結

      高一數(shù)學必修二所有公式總結

      高一數(shù)學必修二知識點總結

      高二數(shù)學知識點總結選修2

      高中數(shù)學填空題的常用解題方法與必修二知識點全面總結

      1069685