精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 > 2023必考高考數學知識點總結

      2023必考高考數學知識點總結

      時間: 業(yè)鴻0 分享

      2023必考高考數學知識點總結精選

      高考就是我們走上成功道路的第一個機會,高考的數學并不簡單,有哪些數學知識是高考必考的呢?下面是小編為大家整理的關于2023必考高考數學知識點總結,歡迎大家來閱讀。

      2023必考高考數學知識點總結

      高考必備數學知識點

      一個推導

      利用錯位相減法推導等比數列的前n項和:

      Sn=a1+a1q+a1q2+…+a1qn-1,

      同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

      兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

      兩個防范

      (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.

      (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

      三種方法

      等比數列的判斷方法有:

      (1)定義法:若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈N_),則{an}是等比數列.

      (2)中項公式法:在數列{an}中,an≠0且a=an·an+2(n∈N_),則數列{an}是等比數列.

      (3)通項公式法:若數列通項公式可寫成an=c·qn(c,q均是不為0的常數,n∈N_),則{an}是等比數列.

      注:前兩種方法也可用來證明一個數列為等比數列.

      重要的數學高考知識點

      等比數列的基本性質

      ⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q(m為等距離的項數之差)。

      ⑵對任何m、n,在等比數列{a}中有:a=a·q,特別地,當m=1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性。

      ⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數,且t+k,p,…,m+…=m+n+r+…(兩邊的自然數個數相等),那么當{a}為等比數列時,有:a、a、a、…=a、a、a、…。

      ⑷若{a}是公比為q的等比數列,則{|a|}、{a}、{ka}也是等比數列,其公比分別為|q|}、{q}、{q}。

      ⑸如果{a}是等比數列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數列。

      ⑹如果{a}是等比數列,那么對任意在n,都有a·a=a·q>0。

      ⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等于這兩個數列的公比的積。

      ⑻當q>1且a>0或00且01時,等比數列為遞減數列;當q=1時,等比數列為常數列;當q<0時,等比數列為擺動數列。

      高考數學必考內容知識

      1、拋物線是軸對稱圖形。對稱軸為直線

      x=—b/2a。

      對稱軸與拋物線的交點為拋物線的頂點P。

      特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2、拋物線有一個頂點P,坐標為

      P(—b/2a,(4ac—b’2)/4a)

      當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

      3、二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      4、一次項系數b和二次項系數a共同決定對稱軸的位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab<0),對稱軸在y軸右。

      5、常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6、拋物線與x軸交點個數

      Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

      Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

      Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

      1809021