精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記

      時(shí)間: 贊銳20 分享

      高中數(shù)學(xué)的學(xué)習(xí)不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來論題。特別是高中階段的數(shù)學(xué)學(xué)習(xí),要特別注重掌握數(shù)學(xué)的思想方法。以下是小編給大家整理的高三數(shù)學(xué)主要知識(shí)點(diǎn),希望能幫助到你們!

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記1

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

      方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

      3、函數(shù)零點(diǎn)的求法:

      求函數(shù)的零點(diǎn):

      (1)(代數(shù)法)求方程的實(shí)數(shù)根;

      (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

      4、二次函數(shù)的零點(diǎn):

      二次函數(shù).

      1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

      2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

      3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記2

      反三角函數(shù)主要是三個(gè):

      y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

      y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍(lán)色線條;

      y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

      sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

      其他公式:

      三角函數(shù)其他公式

      arcsin(-x)=-arcsinx

      arccos(-x)=π-arccosx

      arctan(-x)=-arctanx

      arccot(-x)=π-arccotx

      arcsinx+arccosx=π/2=arctanx+arccotx

      sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

      當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

      當(dāng)x∈[0,π],arccos(cosx)=x

      x∈(—π/2,π/2),arctan(tanx)=x

      x∈(0,π),arccot(cotx)=x

      x〉0,arctanx=π/2-arctan1/x,arccotx類似

      若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記3

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量 冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:   如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);   如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔? 的所有實(shí)數(shù)。   當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:   在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。   在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。   而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

      性質(zhì):

      對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

      排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

      排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

      排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

      總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

      如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

      如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔? 的所有實(shí)數(shù)。

      在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

      在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

      而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

      由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

      可以看到:

      (1)所有的圖形都通過(1,1)這點(diǎn)。

      (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

      (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

      (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

      (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

      (6)顯然冪函數(shù)無界。

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記4

      軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

      一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

      1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

      2.寫出點(diǎn)M的集合;

      3.列出方程=0;

      4.化簡(jiǎn)方程為最簡(jiǎn)形式;

      5.檢驗(yàn)。

      二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

      1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

      2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

      3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

      4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

      5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

      求動(dòng)點(diǎn)軌跡方程的一般步驟:

      ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

      ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

      ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

      ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

      ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記相關(guān)文章:

      高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

      高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

      高三數(shù)學(xué)重點(diǎn)知識(shí)總結(jié)大全

      高三數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

      高三數(shù)學(xué)重要知識(shí)點(diǎn)整理

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總

      人教版高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      1071557