精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 >

      高三數(shù)學必修三第二單元的知識點解析

      時間: 贊銳20 分享

      在學習上我們要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復(fù)習,消化,思考。建好錯題檔案,做好查漏補缺。以下是小編給大家整理的高三數(shù)學必修三第二單元的知識點解析,希望大家能夠喜歡!

      高三數(shù)學必修三第二單元的知識點解析1

      1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.

      2.在應(yīng)用條件時,易A忽略是空集的情況

      3.你會用補集的思想解決有關(guān)問題嗎?

      4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

      5.你知道“否命題”與“命題的否定形式”的區(qū)別.

      6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.

      7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.

      8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.

      9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)

      10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法

      11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

      12.求函數(shù)的值域必須先求函數(shù)的定義域。

      13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

      14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

      (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

      15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

      16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

      17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

      18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

      19.絕對值不等式的解法及其幾何意義是什么?

      20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

      21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

      22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

      23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.

      24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

      25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。

      26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?

      27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

      28.應(yīng)用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。

      29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

      30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

      31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

      32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

      33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

      34.你還記得某些特殊角的三角函數(shù)值嗎?

      35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

      36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:

      (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

      (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

      (3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.

      37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)

      38.形如的周期都是,但的周期為。

      39.正弦定理時易忘比值還等于2R。

      高三數(shù)學必修三第二單元的知識點解析2

      一個推導

      利用錯位相減法推導等比數(shù)列的前n項和:

      Sn=a1+a1q+a1q2+…+a1qn-1,

      同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

      兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

      兩個防范

      (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

      (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

      三種方法

      等比數(shù)列的判斷方法有:

      (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

      (2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

      (3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

      注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

      高三數(shù)學必修三第二單元的知識點解析3

      ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

      ②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.

      ⑶特殊棱錐的頂點在底面的射影位置:

      ①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

      ②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

      ③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

      ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

      ⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

      ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

      ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

      ⑧每個四面體都有內(nèi)切球,球心

      是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

      [注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)

      ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

      簡證:AB⊥CD,AC⊥BD

      BC⊥AD.令得,已知則.

      iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.

      iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.

      簡證:取AC中點,則平面90°易知EFGH為平行四邊形

      EFGH為長方形.若對角線等,則為正方形.


      高三數(shù)學必修三第二單元的知識點解析相關(guān)文章:

      高二數(shù)學必修三第二章復(fù)習要點

      高三年級數(shù)學必修三知識點

      高三數(shù)學必修三知識點總復(fù)習資料

      高中數(shù)學必修三重點知識點復(fù)習

      高中數(shù)學必修三算法初步知識點講解

      高中必修三數(shù)學知識點

      高中數(shù)學必修三知識點歸納總結(jié)

      高中數(shù)學必修3隨機抽樣知識點

      高中數(shù)學必修三知識點總結(jié)

      高二數(shù)學必修三知識點總結(jié)

      1071603