精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 >

      高三數(shù)學老師講解的知識點

      時間: 贊銳20 分享

      練習時應從自已的實際情況出發(fā),循序漸進.應以基礎題、中檔題為主,適當做一些綜合性較強的題以提高能力和思維品質(zhì),以下是小編給大家整理的高三數(shù)學老師講解的知識點,希望能助你一臂之力!

      高三數(shù)學老師講解的知識點1

      1.不等式的定義

      在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

      2.比較兩個實數(shù)的大小

      兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,

      有a-b>0?;a-b=0?;a-b<0?.

      另外,若b>0,則有>1?;=1?;<1?.

      概括為:作差法,作商法,中間量法等.

      3.不等式的性質(zhì)

      (1)對稱性:a>b?;

      (2)傳遞性:a>b,b>c?;

      (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

      (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

      (5)可乘方:a>b>0?(n∈N,n≥2);

      (6)可開方:a>b>0?(n∈N,n≥2).

      復習指導

      1.“一個技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.

      2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

      3.“兩條常用性質(zhì)”

      (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

      ③a>b>0,0;④0

      (2)若a>b>0,m>0,則

      ①真分數(shù)的性質(zhì):<;>(b-m>0);

      ②假分數(shù)的性質(zhì):>;<(b-m>0).

      高三數(shù)學老師講解的知識點2

      1.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);

      2.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=f(x),那么f(x)為偶函數(shù);

      3.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;

      4.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對稱。

      5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

      6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).

      高三數(shù)學老師講解的知識點3

      1、三類角的求法:

      ①找出或作出有關(guān)的角。

      ②證明其符合定義,并指出所求作的角。

      ③計算大小(解直角三角形,或用余弦定理)。

      2、正棱柱——底面為正多邊形的直棱柱

      正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

      正棱錐的計算集中在四個直角三角形中:

      3、怎樣判斷直線l與圓C的位置關(guān)系?

      圓心到直線的距離與圓的半徑比較。

      直線與圓相交時,注意利用圓的“垂徑定理”。

      4、對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

      不看后悔!清華名師揭秘學好高中數(shù)學的方法

      培養(yǎng)興趣是關(guān)鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

      (1)欣賞數(shù)學的美感

      比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

      通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

      (2)注意到數(shù)學在實際生活中的應用。

      例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.

      學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊.

      (3)采用靈活的教學手段,與時俱進。

      利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

      (4)適當看一些科普類的書籍和文章。

      比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質(zhì)的應用,這方面的文章也不少。


      高三數(shù)學老師講解的知識點相關(guān)文章:

      高三數(shù)學知識點總結(jié)及數(shù)學學習方法

      高三數(shù)學知識點考點總結(jié)大全

      高三數(shù)學重要知識點整理

      高三數(shù)學知識點梳理匯總

      高三數(shù)學老師教學總結(jié)

      高三數(shù)學知識點總結(jié),復習注意事項及怎樣學好高三數(shù)學

      高三數(shù)學各階段復習要點總結(jié)及高分技巧分享

      高三數(shù)學知識點總結(jié)

      高三數(shù)學知識點總結(jié)歸納

      高三數(shù)學知識點總結(jié)大全

      1071624