精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

      高三數(shù)學常見知識點歸納

      時間: 舒淇4599 分享

      高三學生很快就會面臨繼續(xù)學業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經驗的學生來說,無疑是個困難的選擇。下面小編為大家?guī)?a href='http://www.oubao-3ob.com/xuexiff/gaosanshuxue/' target='_blank'>高三數(shù)學常見知識點歸納,希望大家喜歡!

      高三數(shù)學常見知識點歸納

      第一部分集合

      (1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

      (2)注意:討論的時候不要遺忘了的情況。

      第二部分函數(shù)與導數(shù)

      1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

      2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導數(shù)法

      3、復合函數(shù)的有關問題

      (1)復合函數(shù)定義域求法:

      ①若f(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

      ②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

      (2)復合函數(shù)單調性的判定:

      ①首先將原函數(shù)分解為基本函數(shù):內函數(shù)與外函數(shù);

      ②分別研究內、外函數(shù)在各自定義域內的單調性;

      ③根據“同性則增,異性則減”來判斷原函數(shù)在其定義域內的單調性。

      注意:外函數(shù)的定義域是內函數(shù)的值域。

      4、分段函數(shù):值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

      5、函數(shù)的奇偶性

      ⑴函數(shù)的定義域關于原點對稱是函數(shù)具有奇偶性的必要條件;

      ⑵是奇函數(shù);

      ⑶是偶函數(shù);

      ⑷奇函數(shù)在原點有定義,則;

      ⑸在關于原點對稱的單調區(qū)間內:奇函數(shù)有相同的單調性,偶函數(shù)有相反的單調性;

      (6)若所給函數(shù)的解析式較為復雜,應先等價變形,再判斷其奇偶性;

      1、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

      2、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

      3、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;

      4、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。

      5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;

      6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

      高三數(shù)學必修知識點

      1.等差數(shù)列的定義

      如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項公式

      若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

      3.等差中項

      如果A=(a+b)/2,那么A叫做a與b的等差中項.

      4.等差數(shù)列的常用性質

      (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項).

      注意:

      一個推導

      利用倒序相加法推導等差數(shù)列的前n項和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個技巧

      已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設元.

      (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數(shù)列的定義進行對稱設元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

      (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項公式法:驗證an=pn+q;

      (4)前n項和公式法:驗證Sn=An2+Bn.

      注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

      高三數(shù)學基礎知識點

      不等式這部分知識,滲透在中學數(shù)學各個分支中,有著十分廣泛的應用。因此不等式應用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據題設與結論的結構特點、內在聯(lián)系、選擇適當?shù)慕鉀Q方案,最終歸結為不等式的求解或證明。不等式的應用范圍十分廣泛,它始終貫串在整個中學數(shù)學之中。

      諸如集合問題,方程(組)的解的討論,函數(shù)單調性的研究,函數(shù)定義域的確定,三角、數(shù)列、復數(shù)、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結為不等式的求解或證明。

      知識整合

      1、解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據,方程的根、函數(shù)的性質和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù)、數(shù)形結合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數(shù)的不等式,運用圖解法可以使得分類標準明晰。

      2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數(shù)的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結合是解不等式的常用方法。方程的根、函數(shù)的性質和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉化和相互變用。

      3、在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù),將不等式的解化歸為直觀、形象的圖象關系,對含有參數(shù)的不等式,運用圖解法,可以使分類標準更加明晰。

      4、證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據題設、題斷的結構特點、內在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

      高三數(shù)學常見知識點歸納相關文章

      精選高三數(shù)學知識點歸納總結

      高三數(shù)學知識點總結與歸納

      高三數(shù)學知識點大全有哪些

      高三數(shù)學復習知識點總結歸納

      高三數(shù)學高考知識點總結大全

      高三數(shù)學重要知識點

      高三數(shù)學必考知識點總結整合

      高三數(shù)學知識點總結歸納

      高三數(shù)學第一輪復習知識點

      高三數(shù)學重要難點知識點總結

      1579291