精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      高三數(shù)學(xué)必考知識點(diǎn)框架整合

      時(shí)間: 楚琪0 分享

      總結(jié)是指社會團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績,總結(jié)一般是怎么寫的呢?下面是小編給大家?guī)淼臄?shù)學(xué)必考知識點(diǎn)框架整合,以供大家參考!

      高三數(shù)學(xué)必考知識點(diǎn)框架整合

      復(fù)數(shù)的概念:

      形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

      復(fù)數(shù)的表示:

      復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

      復(fù)數(shù)的幾何意義:

      (1)復(fù)平面、實(shí)軸、虛軸:

      點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

      (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對應(yīng)關(guān)系,即

      這是因?yàn)?,每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對應(yīng)。

      這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

      復(fù)數(shù)的模:

      復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

      虛數(shù)單位i:

      (1)它的平方等于-1,即i2=-1;

      (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

      (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

      (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

      復(fù)數(shù)模的性質(zhì):

      復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

      對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

      高三數(shù)學(xué)知識點(diǎn)大全

      1.等差數(shù)列的定義

      如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項(xiàng)公式

      若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

      3.等差中項(xiàng)

      如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

      4.等差數(shù)列的常用性質(zhì)

      (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

      注意:

      一個(gè)推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個(gè)技巧

      已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

      (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

      (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

      (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

      注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

      高三數(shù)學(xué)上冊知識點(diǎn)大全

      反三角函數(shù)主要是三個(gè):

      y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線條;

      y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍(lán)色線條;

      y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

      sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

      其他公式:

      三角函數(shù)其他公式

      arcsin(-x)=-arcsinx

      arccos(-x)=π-arccosx

      arctan(-x)=-arctanx

      arccot(-x)=π-arccotx

      arcsinx+arccosx=π/2=arctanx+arccotx

      sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

      當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

      當(dāng)x∈[0,π],arccos(cosx)=x

      x∈(—π/2,π/2),arctan(tanx)=x

      x∈(0,π),arccot(cotx)=x

      x〉0,arctanx=π/2-arctan1/x,arccotx類似

      若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

      高三數(shù)學(xué)必考知識點(diǎn)框架整合相關(guān)文章

      高考文綜第二輪復(fù)習(xí)策略計(jì)劃

      2022年數(shù)學(xué)教師心得感悟

      2022教學(xué)年終總結(jié)50篇

      7月教師工作計(jì)劃

      高中教師教學(xué)總結(jié)10篇

      2022學(xué)校工作總結(jié)個(gè)人報(bào)告(10篇)

      高二化學(xué)教師教學(xué)總結(jié)10篇

      2022高三新學(xué)期教學(xué)工作計(jì)劃5篇

      生物教學(xué)工作計(jì)劃通用

      高中歷史學(xué)習(xí)方法及考試技巧與36個(gè)高中歷史答題規(guī)律

      1615024