精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

      時(shí)間: 維維20 分享

      學(xué)習(xí)任何一門(mén)知識(shí)點(diǎn)都要學(xué)會(huì)對(duì)該知識(shí)點(diǎn)進(jìn)行總結(jié),這樣可以檢查學(xué)生對(duì)知識(shí)的真正掌握程度以及方便學(xué)生日后的復(fù)習(xí)。下面給大家?guī)?lái)一些高一數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

      目錄

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總

      高一數(shù)學(xué)知識(shí)點(diǎn)

      高一數(shù)學(xué)知識(shí)點(diǎn)大全

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總合集

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總

      函數(shù)的有關(guān)概念

      1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

      注意:

      1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域。

      求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開(kāi)方數(shù)不小于零;

      (3)對(duì)數(shù)式的真數(shù)必須大于零;

      (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

      (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

      (6)指數(shù)為零底不可以等于零,

      (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

      u 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

      2.值域 : 先考慮其定義域

      (1)觀察法

      (2)配方法

      (3)代換法

      3. 函數(shù)圖象知識(shí)歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

      (2) 畫(huà)法

      A、 描點(diǎn)法:

      B、 圖象變換法

      常用變換方法有三種

      1) 平移變換

      2) 伸縮變換

      3) 對(duì)稱(chēng)變換

      4.區(qū)間的概念

      (1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

      (2)無(wú)窮區(qū)間

      (3)區(qū)間的數(shù)軸表示.

      5.映射

      一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯

      通過(guò)上面的高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié),同學(xué)們已經(jīng)梳理了一遍高一數(shù)學(xué)必修1的知識(shí)點(diǎn),也加深了對(duì)該知識(shí)的更深了解,相信同學(xué)們一定能學(xué)好這部分知識(shí)點(diǎn),也希望同學(xué)們以后的學(xué)習(xí)中多做總結(jié)。

      返回目錄

      高一數(shù)學(xué)知識(shí)點(diǎn)

      集合

      (1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n-1;非空真子集的數(shù)為2^n-2;

      (2)注意:討論的時(shí)候不要遺忘了的情況。

      (3)

      第二部分函數(shù)與導(dǎo)數(shù)

      1.映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

      2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;

      ⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

      3.復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:

      ①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

      (2)復(fù)合函數(shù)單調(diào)性的判定:

      ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

      ②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

      ③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

      注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

      4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

      5.函數(shù)的奇偶性

      ⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;

      ⑵是奇函數(shù);

      ⑶是偶函數(shù);

      ⑷奇函數(shù)在原點(diǎn)有定義,則;

      ⑸在關(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

      (6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

      返回目錄

      高一數(shù)學(xué)知識(shí)點(diǎn)大全

      1.等差數(shù)列的定義

      如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項(xiàng)公式

      若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

      3.等差中項(xiàng)

      如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

      4.等差數(shù)列的常用性質(zhì)

      (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

      注意:

      一個(gè)推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個(gè)技巧

      已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類(lèi)問(wèn)題,要善于設(shè)元.

      (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱(chēng)設(shè)元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

      (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

      (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

      注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

      返回目錄

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總合集

      兩個(gè)復(fù)數(shù)相等的定義:

      如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

      a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

      a=0,b=0.

      復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。

      復(fù)數(shù)相等特別提醒:

      一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

      解復(fù)數(shù)相等問(wèn)題的方法步驟:

      (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

      (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)理科歸納5

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

      性質(zhì):

      對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

      排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

      排除了為0這種可能,即對(duì)于x

      排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

      返回目錄

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全相關(guān)文章:

      高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

      高一數(shù)學(xué)集合知識(shí)點(diǎn)匯總

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

      高一數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備

      774989