精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦>學習方法>初中學習方法>初三學習方法>九年級數(shù)學>

      九年級數(shù)學知識點

      時間: 躍瀚0 分享

      學習從來無捷徑。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些九年級數(shù)學的知識點,希望對大家有所幫助。

      初三下冊數(shù)學知識點總結

      解直角三角形

      1.直角三角形兩個銳角互余。

      2.直角三角形的三條高交點在一個頂點上。

      3.勾股定理:兩直角邊平方和等于斜邊平方

      四、利用三角函數(shù)測高

      1、解直角三角形的應用

      (1)通過解直角三角形能解決實際問題中的很多有關測量問.

      如:測不易直接測量的物體的高度、測河寬等,關鍵在于構造出直角三角形,通過測量角的度數(shù)和測量邊的長度,計算出所要求的物體的高度或長度.

      (2)解直角三角形的一般過程是:

      ①將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).

      ②根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案.

      初三數(shù)學知識點總結

      半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。

      切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。

      是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。

      圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。

      要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。

      如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。

      若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。

      輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。

      基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經(jīng)??偨Y方法顯。

      切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。

      虛心勤學加苦練,成績上升成直線。

      九年級上冊數(shù)學知識點歸納

      切線長定理。

      (1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

      (2)切線長定理。

      ∵PA、PB切⊙O于點A、B

      ∴PA=PB,∠1=∠2。

      內(nèi)切圓及有關計算。

      (1)內(nèi)切圓的圓心是三個內(nèi)角平分線的交點,它到三邊的距離相等。

      (2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

      求:AD、BE、CF的長。

      分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

      可得方程:5-x+7-x=6,解得x=3

      (3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

      求內(nèi)切圓的半徑r。

      分析:先證得正方形ODCE,

      得CD=CE=r

      AD=AF=b-r,BE=BF=a-r

      b-r+a-r=c

      (1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

      BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

      (2)相交弦定理。

      圓的兩條弦AB與CD相交于點P,則PA?PB=PC?PD。

      (3)切割線定理。

      如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB?PC。

      (4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。

      數(shù)學學習方法

      1、有準備地進入每一堂課,帶著興趣,帶著問題,帶著目的聽課。準備什么呢就是根據(jù)課程表的安排,有針對性地預習弱項課程,預習時要弄清下一節(jié)課的內(nèi)容,其中哪些是清楚的,哪些是模糊的,哪些是不懂的,由此確定出聽課的重點。課后進行總結,歸納出所講知識的框架,然后做相關練習。

      2、按部就班,平時學習不應貪快,要一章一章過關,不要輕易留下不明白或者理解不深刻的問題。

      3、學習,“習”的作用決定了學習結果是否有好的成效。每次聽完課后,閱讀一些相關的輔導資料,做一些相關的習題?,F(xiàn)在的輔導資料很多,哪一種好呢哪一種適合自己的情況在書店的輔導資料書架前大致閱讀一些,感覺哪本自己看起來很舒服,就用哪一本。如果還感覺不準,可以咨詢代課老師。

      九年級數(shù)學知識點相關文章

      初三數(shù)學知識點考點歸納總結

      九年級數(shù)學上冊重要知識點總結

      九年級數(shù)學上冊知識點整理

      九年級上冊數(shù)學知識點歸納整理

      初三數(shù)學知識點歸納總結

      初三數(shù)學知識點歸納人教版

      初三數(shù)學知識點整理

      九年級上冊數(shù)學知識點歸納

      初中九年級數(shù)學知識點總結歸納

      1090146