精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 教育資訊 > 教育 > 高考數(shù)學知識點一覽

      高考數(shù)學知識點一覽

      時間: 躍瀚1373 分享

      高考數(shù)學知識點一覽2022

      奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的。下面是小編為大家整理的高考數(shù)學知識點,僅供參考,喜歡可以收藏分享一下喲!

      高考數(shù)學知識點一覽

      高三上學期數(shù)學必修二知識點

      空間中的平行關系

      1、直線與平面平行(核心)

      定義:直線和平面沒有公共點

      判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

      性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

      2、平面與平面平行

      定義:兩個平面沒有公共點

      判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

      性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

      3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

      高三數(shù)學必修四知識點復習

      復數(shù)的概念:

      形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。

      復數(shù)的表示:

      復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。

      復數(shù)的幾何意義:

      (1)復平面、實軸、虛軸:

      點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

      (2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應關系,即

      這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。

      這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。

      復數(shù)的模:

      復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=

      虛數(shù)單位i:

      (1)它的平方等于-1,即i2=-1;

      (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

      (3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

      (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

      復數(shù)模的性質(zhì):

      復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:

      對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

      高三數(shù)學必修五復習知識點

      平面的基本性質(zhì)與推論

      1、平面的基本性質(zhì):

      公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

      公理2:過不在一條直線上的三點,有且只有一個平面;

      公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

      2、空間點、直線、平面之間的位置關系:

      直線與直線—平行、相交、異面;

      直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

      平面與平面—平行、相交。

      3、異面直線:

      平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

      所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

      兩條直線不是異面直線,則兩條直線平行或相交(反證);

      異面直線不同在任何一個平面內(nèi)。

      求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

      高考數(shù)學知識點一覽相關文章:

      高考必考的數(shù)學知識點總結

      2022高考數(shù)學必考知識點考點總結大全

      高考數(shù)學知識點整理

      最新高考數(shù)學知識點歸納總結

      最新高考數(shù)學知識點歸納

      2022高考數(shù)學必考知識點歸納最新

      高考數(shù)學知識點總結歸納

      高三數(shù)學第一輪復習知識點

      高三數(shù)學知識點梳理匯總

      高三數(shù)學都有哪些知識點

      1407061