精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

      2017瀘州中考數(shù)學(xué)練習(xí)試卷(2)

      時(shí)間: 漫柔41 分享

        2017瀘州中考數(shù)學(xué)練習(xí)試題答案

        一、選擇題(本大題共8小題,每小題3分,共24分)

        1.比﹣1大2的數(shù)是(  )

        A.﹣3 B.﹣2 C.1 D.2

        【考點(diǎn)】有理數(shù)的加法.

        【分析】根據(jù)題意可得:比﹣1大2的數(shù)是﹣1+2=1.

        【解答】解:﹣1+2=1.

        故選C.

        2.每年的6月14日,是世界獻(xiàn)血日,據(jù)統(tǒng)計(jì),某市義務(wù)獻(xiàn)血達(dá)421000人,421000這個(gè)數(shù)用科學(xué)記數(shù)法表示為(  )

        A.4.21×105 B.42.1×104 C.4.21×10﹣5 D.0.421×106

        【考點(diǎn)】科學(xué)記數(shù)法—表示較大的數(shù).

        【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).

        【解答】解:421 000=4.21×105,

        故選:A.

        3.不等式組 中的兩個(gè)不等式的解集在同一個(gè)數(shù)軸上表示正確的是(  )

        A. B. C. D.

        【考點(diǎn)】解一元一次不等式組;在數(shù)軸上表示不等式的解集.

        【分析】分別求出各不等式的解集,再求出其公共解集即可.

        【解答】解: ,由①得,x≥﹣1,

        由②得,x<2,

        故不等式組的解集為:﹣1≤x<2.

        在數(shù)軸上表示為: .

        故選D.

        4.一元二次方程x2+2x+2=0的根的情況是(  )

        A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根

        C.沒有實(shí)數(shù)根 D.只有一個(gè)實(shí)數(shù)根

        【考點(diǎn)】根的判別式.

        【分析】計(jì)算判別式的值,然后利用判別式的意義判斷方程根的情況.

        【解答】解:△=22﹣4×2=﹣4<0,

        所以方程沒有實(shí)數(shù)解.

        故選C.

        5.由6個(gè)完全相同的小正方體組成的立體圖形如圖所示,則在以下視圖中,與其它三個(gè)形狀都不同的是(  )

        A.主視圖 B.俯視圖 C.左視圖 D.右視圖

        【考點(diǎn)】簡(jiǎn)單組合體的三視圖.

        【分析】主視圖、左視圖、俯視圖、右視圖是分別從物體正面、左面、上面、右面看所得到的圖形,選出即可.

        【解答】解:主視圖、左視圖、右視圖都為:

        俯視圖為: ,

        故選B.

        6.如圖,AB為⊙O的切線,A為切點(diǎn),BO的延長(zhǎng)線交⊙O于點(diǎn)C,∠OAC=35°,則∠B的度數(shù)是(  )

        A.15° B.20° C.25° D.35°

        【考點(diǎn)】切線的性質(zhì).

        【分析】根據(jù)切線的性質(zhì)得∠BAO=90°,再利用等腰三角形的性質(zhì)得∠C=∠OAC=35°,然后根據(jù)三角形內(nèi)角和計(jì)算∠B的度數(shù).

        【解答】解:∵AB為⊙O的切線,

        ∴OA⊥AB,

        ∴∠BAO=90°,

        ∵OA=OC,

        ∴∠C=∠OAC=35°,

        ∴∠B=180°﹣∠C﹣∠BAC=180°﹣35°﹣35°﹣90°=20°.

        故選B.

        7.如圖,點(diǎn)P在反比例函數(shù)y= 的圖象上,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,且△APB的面積為2,則k等于(  )

        A.﹣4 B.﹣2 C.2 D.4

        【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義.

        【分析】由反比例函數(shù)系數(shù)k的幾何意義結(jié)合△APB的面積為2即可得出k=±4,再根據(jù)反比例函數(shù)在第二象限有圖象即可得出k=﹣4,此題得解.

        【解答】解:∵點(diǎn)P在反比例函數(shù)y= 的圖象上,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,

        ∴S△APB= |k|=2,

        ∴k=±4.

        又∵反比例函數(shù)在第二象限有圖象,

        ∴k=﹣4.

        故選A.

        8.如圖,在四邊形ABCD中,E,F(xiàn)分別在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,則FB等于(  )

        A. B. C.5 D.6

        【考點(diǎn)】平行線分線段成比例.

        【分析】根據(jù)平行線分線段成比例定理列出比例式,代入數(shù)值即可求解.

        【解答】解:∵AB∥EF∥DC,

        ∴ = ,

        ∵DE=3,DA=5,CF=4,

        ∴ = ,

        ∴CB= ,

        ∴FB=CB﹣CF= ﹣4= .

        故選B.

        二、填空題(本大題共6小題,每小題3分,共18分)

        9.化簡(jiǎn): ﹣ =   .

        【考點(diǎn)】二次根式的加減法.

        【分析】先把各根式化為最簡(jiǎn)二次根式,再根據(jù)二次根式的減法進(jìn)行計(jì)算即可.

        【解答】解:原式=2 ﹣

        = .

        故答案為: .

        10.計(jì)算:(﹣2xy2)3= ﹣8x3y6 .

        【考點(diǎn)】?jī)绲某朔脚c積的乘方.

        【分析】根據(jù)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;冪的乘方,底數(shù)不變指數(shù)相乘計(jì)算.

        【解答】解:(﹣2xy2)3,

        =(﹣2)3x3(y2)3,

        =﹣8x3y6.

        故填﹣8x3y6.

        11.一個(gè)菱形的周長(zhǎng)為52cm,一條對(duì)角線長(zhǎng)為10cm,則其面積為 120 cm2.

        【考點(diǎn)】菱形的性質(zhì).

        【分析】先由菱形ABCD的周長(zhǎng)求出邊長(zhǎng),再根據(jù)菱形的性質(zhì)求出OA,然后由勾股定理求出OB,即可得出BD,再根據(jù)菱形的面積等于對(duì)角線乘積的一半計(jì)算即可.

        【解答】解:如圖所示:

        ∵四邊形ABCD是菱形,

        ∴AB=BC=CD=DA,AC⊥BD,OA= AC=5,OB= BD,

        ∵菱形ABCD的周長(zhǎng)為52cm,

        ∴AB=13cm,

        在Rt△AOB中,根據(jù)勾股定理得:OB= = =12cm,

        ∴BD=2OB=24cm,

        ∴菱形ABCD的面積= ×10×24=120cm2,

        故答案為120.

        12.如圖,ABCD是⊙O的內(nèi)接四邊形,點(diǎn)E在AB的延長(zhǎng)線上,BF是∠CBE的平分線,∠ADC=110°,則∠FBE= 55° .

        【考點(diǎn)】圓內(nèi)接四邊形的性質(zhì).

        【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠CBE=∠ADC=110°,根據(jù)角平分線定義求出即可.

        【解答】解:∵ABCD是⊙O的內(nèi)接四邊形,∠ADC=110°,

        ∴∠CBE=∠ADC=110°,

        ∵BF是∠CBE的平分線,

        ∴∠FBE= ∠CBE=55°,

        故答案為:55°.

        13.如圖,在△ABC中,∠ACB=90°,AC=1,AB=2,以A為圓心,以AC為半徑畫弧,交AB于D,則扇形CAD的周長(zhǎng)是  +2 (結(jié)果保留π)

        【考點(diǎn)】弧長(zhǎng)的計(jì)算;勾股定理.

        【分析】首先根據(jù)銳角三角函數(shù)確定∠A的度數(shù),然后利用弧長(zhǎng)公式求得弧長(zhǎng),加上兩個(gè)半徑即可求得周長(zhǎng).

        【解答】解:∵∠ACB=90°,AC=1,AB=2,

        ∴∠A=60°,

        ∴ 的長(zhǎng)為 = ,

        ∴扇形CAD的周長(zhǎng)是 +2,

        故答案為: +2.

        14.如圖,二次函數(shù)y=a(x﹣2)2+k的圖象與x軸交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為﹣1,則點(diǎn)B的橫坐標(biāo)為 5 .

        【考點(diǎn)】拋物線與x軸的交點(diǎn).

        【分析】根據(jù)二次函數(shù)的解析式即可求出對(duì)稱軸為x=2,利用對(duì)稱性即可求出B的橫坐標(biāo).

        【解答】解:由題意可知:二次函數(shù)的對(duì)稱軸為x=2,

        ∴點(diǎn)A與B關(guān)于x=2對(duì)稱,

        設(shè)B的橫坐標(biāo)為x

        ∴ =2

        ∴B的橫坐標(biāo)坐標(biāo)為5

        故答案為:5.

        三、解答題(本大題共10小題,共78分)

        15.先化簡(jiǎn),再求值: ÷ ,其中x=﹣ .

        【考點(diǎn)】分式的化簡(jiǎn)求值.

        【分析】先根據(jù)分式的除法法則把原式進(jìn)行化簡(jiǎn),再把x=﹣ 代入進(jìn)行計(jì)算即可.

        【解答】解:原式= •

        =x2+4,

        當(dāng)x=﹣ 時(shí),原式=3+4=7.

        16.一個(gè)不透明的口袋中有三個(gè)小球,上面分別標(biāo)有數(shù)字﹣2,1,3,每個(gè)小球除數(shù)字外其它都相同,小明先從袋中隨機(jī)取出1個(gè)小球,記下數(shù)字;小強(qiáng)再?gòu)目诖S嗟膬蓚€(gè)小球中隨機(jī)取出1個(gè)小球記下數(shù)字,用畫樹狀圖(或列表)的方法,求小明,小強(qiáng)兩人所記的數(shù)字之和為奇數(shù)的概率.

        【考點(diǎn)】列表法與樹狀圖法.

        【分析】列表得出所有等可能的情況數(shù),找出這兩個(gè)球上的兩個(gè)數(shù)字之和為奇數(shù)的情況數(shù),即可求出所求的概率.

        【解答】解:列表得:

        3 1 ﹣2

        3 ﹣﹣﹣ (1,3) (﹣2,3)

        1 (3,1) ﹣﹣﹣ (﹣2,1)

        ﹣2 (3,﹣2) (1,﹣2) ﹣﹣﹣

        所有等可能的情況有6種,其中兩個(gè)數(shù)字之和為奇數(shù)的情況有4種,

        所以小明,小強(qiáng)兩人所記的數(shù)字之和為奇數(shù)的概率= = .

        17.一輛客車和一輛卡車同時(shí)從A地出發(fā)沿同一公路同方向行駛,客車的行駛速度是70km/h,卡車的行駛速度是60km/h,客車比卡車早1h經(jīng)過B地,A、B兩地間的路程是多少?

        【考點(diǎn)】一元一次方程的應(yīng)用;代數(shù)式求值.

        【分析】設(shè)A、B兩地間的路程為xkm,根據(jù)題意分別求出客車所用時(shí)間和卡車所用時(shí)間,根據(jù)兩車時(shí)間差為1小時(shí)即可列出方程,求出x的值.

        【解答】解:設(shè)A、B兩地間的路程為xkm,

        根據(jù)題意得 ﹣ =1,

        解得x=420.

        答:A、B兩地間的路程為420km.

        18.每年的3月22日為“世界水日”,為宣傳節(jié)約用水,小強(qiáng)隨機(jī)調(diào)查了某小區(qū)部分家庭3月份的用水情況,并將收集的數(shù)據(jù)整理成如下統(tǒng)計(jì)圖.

        (1)小強(qiáng)共調(diào)查了 20 戶家庭.

        (2)所調(diào)查家庭3月份用水量的眾數(shù)為 4 噸;平均數(shù)為 4.2 噸;

        (3)若該小區(qū)有500戶居民,請(qǐng)你估計(jì)這個(gè)小區(qū)3月份的用水量.

        【考點(diǎn)】眾數(shù);用樣本估計(jì)總體;加權(quán)平均數(shù).

        【分析】(1)根據(jù)條形統(tǒng)計(jì)圖求出調(diào)查的家庭總戶數(shù)即可;

        (2)根據(jù)條形統(tǒng)計(jì)圖求出6月份用水量的平均數(shù),找出眾數(shù)即可;

        (3)根據(jù)統(tǒng)計(jì)圖求出平均每戶的用水量,乘以500即可得到結(jié)果.

        【解答】解:(1)根據(jù)題意得:1+1+3+6+4+2+2+1=20(戶),

        則小強(qiáng)一共調(diào)查了20戶家庭;

        故答案為:20;

        (2)根據(jù)統(tǒng)計(jì)圖得:3月份用水量的眾數(shù)為4噸;

        平均數(shù)為 =4.(噸),

        則所調(diào)查家庭3月份用水量的眾數(shù)為4噸、平均數(shù)為4.2噸;

        故答案為:4,4.2;

        (3)根據(jù)題意得:500×4.2=2100(噸),

        則這個(gè)小區(qū)3月份的用水量為2100噸.

        19.如圖,在四邊形ABDC中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點(diǎn),并且E,F(xiàn),G,H四點(diǎn)不共線.

        (1)求證:四邊形EFGH為平行四邊形.

        (2)當(dāng)AC=BD時(shí),求證:四邊形EFGH為菱形.

        【考點(diǎn)】中點(diǎn)四邊形;三角形中位線定理.

        【分析】(1)根據(jù)三角形中位線定理得到FG∥EH,F(xiàn)G=EH,根據(jù)平行四邊形的判定定理證明;

        (2)根據(jù)菱形是判定定理證明.

        【解答】(1)證明:∵F,G分別為BC,CD的中點(diǎn),

        ∴FG= BD,F(xiàn)G∥BD,

        ∵E,H分別為AB,DA的中點(diǎn),

        ∴EH= BD,EH∥BD,

        ∴FG∥EH,F(xiàn)G=EH,

        ∴四邊形EFGH為平行四邊形.

        (2)證明:由(1)得,F(xiàn)G= BD,GH= BC,

        ∵AC=BD,

        ∴GF=GH,

        ∴平行四邊形EFGH為菱形.

        20.如圖,某山坡坡長(zhǎng)AB為110米,坡角(∠A)為34°,求坡高BC及坡寬AC.(結(jié)果精確到0.1米)

        【參考數(shù)據(jù):sin34°=0.559,cos34°=0.829,tan34°=0.675】

        【考點(diǎn)】解直角三角形的應(yīng)用﹣坡度坡角問題.

        【分析】根據(jù)正弦、余弦的定義列出算式,計(jì)算即可.

        【解答】解:在Rt△ABC中,sinA= ,cosA= ,

        則BC=AB•sinA=110×0.559≈61.5(米),

        AC=AB•cosA=110×0.829≈91.2(米),

        答:坡高BC約為61.5米,坡寬AC約為91.2米.

        21.如圖,在正方形ABCD中,E為直線AB上的動(dòng)點(diǎn)(不與A,B重合),作射線DE并繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)45°,交直線BC邊于點(diǎn)F,連結(jié)EF.

        探究:當(dāng)點(diǎn)E在邊AB上,求證:EF=AE+CF.

        應(yīng)用:(1)當(dāng)點(diǎn)E在邊AB上,且AD=2時(shí),則△BEF的周長(zhǎng)是 4 .

        (2)當(dāng)點(diǎn)E不在邊AB上時(shí),EF,AE,CF三者的數(shù)量關(guān)系是 EF=CF﹣AE或EF=AE﹣CF .

        【考點(diǎn)】四邊形綜合題.

        【分析】探究:作輔助線,構(gòu)建全等三角形,證明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再證明△GDE≌△FDE(SAS),根據(jù)EG的長(zhǎng)可得結(jié)論;

        應(yīng)用:

        (1)利用探究的結(jié)論計(jì)算三角形周長(zhǎng)為4;

        (2)分兩種情況:①點(diǎn)E在BA的延長(zhǎng)線上時(shí),如圖2,EF=CF﹣AE,②當(dāng)點(diǎn)E在AB的延長(zhǎng)線上時(shí),如圖3,

        EF=AE﹣CF,兩種情況都是作輔助線,構(gòu)建全等三角形,證明兩三角形全等得線段相等,根據(jù)線段的和與差得出結(jié)論.

        【解答】探究:證明:如圖,延長(zhǎng)BA到G,使AG=CF,連接DG,

        ∵四邊形ABCD是正方形,

        ∴DA=DC,∠DAG=∠DCF=90°,

        ∴△DAG≌△DCF(SAS),

        ∴∠1=∠3,DG=DF,

        ∵∠ADC=90°,∠EDF=45°,

        ∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,

        ∵DE=DE,

        ∴△GDE≌△FDE(SAS),

        ∴EF=EG=AE+AG=AE+CF;

        應(yīng)用:

        解:(1)△BEF的周長(zhǎng)=BE+BF+EF,

        由探究得:EF=AE+CF,

        ∴△BEF的周長(zhǎng)=BE+BF+AE+CF=AB+BC=2+2=4,

        故答案為:4;

        (2)當(dāng)點(diǎn)E不在邊AB上時(shí),分兩種情況:

       ?、冱c(diǎn)E在BA的延長(zhǎng)線上時(shí),如圖2,

        EF=CF﹣AE,理由是:

        在CB上取CG=AE,連接DG,

        ∵∠DAE=∠DCG=90°,AD=DC,

        ∴△DAE≌△DCG(SAS)

        ∴DE=DG,∠EDA=∠GDC

        ∵∠ADC=90°,

        ∴∠EDG=90°

        ∴∠EDF+∠FDG=90°,

        ∵∠EDF=45°,

        ∴∠FDG=90°﹣45°=45°,

        ∴∠EDF=∠FDG=45°,

        在△EDF和△GDF中,

        ∵ ,

        ∴△EDF≌△GDF(SAS),

        ∴EF=FG,

        ∴EF=CF﹣CG=CF﹣AE;

       ?、诋?dāng)點(diǎn)E在AB的延長(zhǎng)線上時(shí),如圖3,

        EF=AE﹣CF,理由是:

        把△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至△DCG,可使AD與DC重合,連接DG,

        由旋轉(zhuǎn)得:DE=DG,∠EDG=90°,AE=CG,

        ∵∠EDF=45°,

        ∴∠GDF=90°﹣45°=45°,

        ∴∠EDF=∠GDF,

        ∵DF=DF,

        ∴△EDF≌△GDF,

        ∴EF=GF,

        ∴EF=CG﹣CF=AE﹣CF;

        綜上所述,當(dāng)點(diǎn)E不在邊AB上時(shí),EF,AE,CF三者的數(shù)量關(guān)系是:EF=CF﹣AE或EF=AE﹣CF;

        故答案為:EF=CF﹣AE或EF=AE﹣CF.

        22.甲、乙兩輛汽車沿同一路線從A地前往B地,甲以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙在甲出發(fā)2小時(shí)后勻速前往B地,設(shè)甲、乙兩車與A地的路程為s(千米),甲車離開A地的時(shí)間為t(時(shí)),s與t之間的函數(shù)圖象如圖所示.

        (1)求a和b的值.

        (2)求兩車在途中相遇時(shí)t的值.

        (3)當(dāng)兩車相距60千米時(shí),t=  或  時(shí).

        【考點(diǎn)】一次函數(shù)的應(yīng)用.

        【分析】(1)根據(jù)速度=路程÷時(shí)間即可求出a值,再根據(jù)時(shí)間=路程÷速度算出b到5.5之間的時(shí)間段,由此即可求出b值;

        (2)觀察圖形找出兩點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出s乙關(guān)于t的函數(shù)關(guān)系式,令s乙=150即可求出兩車相遇的時(shí)間;

        (3)分0≤t≤3、3≤t≤4和4≤t≤5.5三段求出s甲關(guān)于t的函數(shù)關(guān)系式,二者做差令其絕對(duì)值等于60即可得出關(guān)于t的函數(shù)絕對(duì)值符號(hào)的一元一次方程,解之即可求出t值,再求出0≤t≤2時(shí),s甲=50t=60中t的值.綜上即可得出結(jié)論.

        【解答】解:(1)a= =50,

        b=5.5﹣ =4.

        (2)設(shè)乙車與A地的路程s與甲車離開A地的時(shí)間t之間的函數(shù)關(guān)系式為s乙=kt+m,

        將(2,0)、(5,300)代入s=kt+m,

        ,解得: ,

        ∴s乙=100t﹣200(2≤t≤5).

        當(dāng)s乙=100t﹣200=150時(shí),t=3.5.

        答:兩車在途中相遇時(shí)t的值為3.5.

        (3)當(dāng)0≤t≤3時(shí),s甲=50t;

        當(dāng)3≤t≤4時(shí),s甲=150;

        當(dāng)4≤t≤5.5時(shí),s甲=150+2×50(t﹣4)=100t﹣250.

        ∴s甲= .

        令|s甲﹣s乙|=60,即|50t﹣100t+200|=60,|150﹣100t+200|=60或|100t﹣250﹣100t+200|=60,

        解得:t1= ,t2= (舍去),t3= (舍去),t4= (舍去);

        當(dāng)0≤t≤2時(shí),令s甲=50t=60,解得:t= .

        綜上所述:當(dāng)兩車相距60千米時(shí),t= 或 .

        故答案為: 或 .

        23.如圖,四邊形ABCO為矩形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且點(diǎn)B的坐標(biāo)為(﹣1,2),將此矩形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得矩形DEFO,拋物線y=﹣x2+bx+c過B,E兩點(diǎn).

        (1)求此拋物線的函數(shù)關(guān)系式.

        (2)將矩形ABCO向左平移,并且使此矩形的中心在此拋物線上,求平移距離.

        (3)將矩形DEFO向上平移距離d,并且使此拋物線的頂點(diǎn)在此矩形的邊上,則d的值是  或  .

        【考點(diǎn)】二次函數(shù)圖象與幾何變換.

        【分析】(1)待定系數(shù)法即可解決問題.

        (2)矩形ABCO的中心坐標(biāo)為(﹣ ,1),可得1=﹣x2+ x+ ,解得x=﹣ 或2,所以平移距離d=﹣ ﹣(﹣ )= .

        (3)求出頂點(diǎn)坐標(biāo),點(diǎn)E坐標(biāo),即可解決問題.

        【解答】解:(1)由題意,點(diǎn)E的坐標(biāo)為(2,1),

        則 ,解得 ,

        ∴此拋物線的解析式為y=﹣x2+ x+ .

        (2)∵矩形ABCO的中心坐標(biāo)為(﹣ ,1),

        ∴1=﹣x2+ x+ ,

        解得x=﹣ 或2,

        ∴平移距離d=﹣ ﹣(﹣ )= .

        (3)∵y=﹣x2+ x+ =﹣(x﹣ )2+ ,

        ∴拋物線的頂點(diǎn)坐標(biāo)為( , ),

        ∵E(2,1),

        ∴平移距離d= 或 ﹣1= ,

        故答案為 或 .

        24.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=6cm,BC=9cm,點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿A→D→C方向向點(diǎn)C運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿C→B方向向點(diǎn)B運(yùn)動(dòng),設(shè)點(diǎn)Q運(yùn)動(dòng)時(shí)間為ts,△APQ的面積為Scm2.

        (1)DC= 5 cm,sin∠BCD=   .

        (2)當(dāng)四邊形PDCQ為平行四邊形時(shí),求t的值.

        (3)求S與t的函數(shù)關(guān)系式.

        (4)若S與t的函數(shù)圖象與直線S=k(k為常數(shù))有三個(gè)不同的交點(diǎn),則k的取值范圍是

        【考點(diǎn)】四邊形綜合題.

        【分析】(1)如圖1,作高線DE,證明四邊形ABED是矩形,再利用勾股定理求DC的長(zhǎng),在Rt△DEC中,求出

        sin∠BCD= = ;

        (2)當(dāng)四邊形PDCQ為平行四邊形時(shí),點(diǎn)P在AD上,如圖2,根據(jù)PD=CQ列方程得:6﹣2t=t,解出即可;

        (3)分三種情況:

       ?、佼?dāng)0

       ?、诋?dāng)3

       ?、郛?dāng)

        (4)畫出圖象,根據(jù)圖象得出結(jié)論.

        【解答】解:(1)過D作DE⊥BC于E,則∠BED=90°,

        ∵AD∥BC,

        ∴∠B+∠BAD=180°,

        ∵∠B=90°,

        ∴∠B=∠BAD=90°,

        ∴四邊形ABED是矩形,

        ∴AD=BE=6,DE=AB=4,

        ∴EC=BC﹣BE=9﹣6=3,

        在Rt△DEC中,由勾股定理得:DC=5,

        sin∠BCD= = ,

        故答案為:5, ;

        (2)由題意得:AP=2t,CQ=t,

        則PD=6﹣2t,

        當(dāng)四邊形PDCQ為平行四邊形時(shí),如圖2,

        則PD=CQ,

        ∴6﹣2t=t,

        ∴t=2;

        (3)分三種情況:

       ?、佼?dāng)0

        S= AP•AB= ×4×2t=4t;

        ②當(dāng)3

        過P作MN⊥BC,交BC于N,交AD的延長(zhǎng)線于M,

        由題意得:CQ=t,BQ=9﹣t,PA=2t,PD=2t﹣6,

        ∴PC=5﹣PD=5﹣(2t﹣6)=11﹣2t,

        由圖1得:sin∠C= ,

        ,

        PN= ,

        ∴PM=4﹣PN=4﹣ = ,

        S=S梯形ABCD﹣S△PQC﹣S△ABQ﹣S△APD,

        = ﹣ ﹣ × ﹣ = ;

       ?、郛?dāng)

        S= =2t;

        綜上所述,S與t的函數(shù)關(guān)系式為:S= .

        (4)如圖6,S= ;

        S的最小值為: = ,

        當(dāng)t=3時(shí),S=4×3=12,

        ∴則k的取值范圍是:

        故答案為:

      猜你喜歡:

      1.2017年中考數(shù)學(xué)試卷含答案

      2.2017中考數(shù)學(xué)考前模擬題及答案

      3.2017安徽中考數(shù)學(xué)練習(xí)試卷及答案

      4.2017初中數(shù)學(xué)中考模擬試卷

      5.2017中考數(shù)學(xué)試題及答案

      6.2017中考數(shù)學(xué)全真模擬試題及答案

      2017瀘州中考數(shù)學(xué)練習(xí)試卷(2)

      2017瀘州中考數(shù)學(xué)練習(xí)試題答案 一、選擇題(本大題共8小題,每小題3分,共24分) 1.比﹣1大2的數(shù)是( ) A.﹣3 B.﹣2 C.1 D.2 【考點(diǎn)】有理數(shù)的加法. 【分析】根據(jù)
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式

      精選文章

      • 2017瀘州中考數(shù)學(xué)模擬試題答案
        2017瀘州中考數(shù)學(xué)模擬試題答案

        學(xué)生想在中考取得提升備考的時(shí)候就要多做中考數(shù)學(xué)模擬真題,并加以復(fù)習(xí),這樣能更快提升自己的成績(jī)。以下是學(xué)習(xí)啦小編為你整理的2017瀘州中考數(shù)學(xué)模

      • 2017龍巖中考數(shù)學(xué)模擬試卷及答案
        2017龍巖中考數(shù)學(xué)模擬試卷及答案

        很多考生對(duì)中考數(shù)學(xué)不知道該如何復(fù)習(xí),掌握中考數(shù)學(xué)模擬試題多加練習(xí)會(huì)讓考生得到一定幫助,以下是小編精心整理的2017龍巖中考數(shù)學(xué)模擬試題及答案,

      • 2017龍江中考數(shù)學(xué)練習(xí)試題及答案
        2017龍江中考數(shù)學(xué)練習(xí)試題及答案

        初三的學(xué)生都想要提高自己的中考數(shù)學(xué)成績(jī),了解中考數(shù)學(xué)練習(xí)真題多加練習(xí)會(huì)讓考生得到一定幫助,以下是小編精心整理的2017龍江中考數(shù)學(xué)練習(xí)真題及答

      • 2017龍東地區(qū)中考數(shù)學(xué)模擬試題
        2017龍東地區(qū)中考數(shù)學(xué)模擬試題

        備戰(zhàn)中考的考生可以對(duì)中考數(shù)學(xué)模擬考題多加練習(xí),這樣可以提高自己的中考數(shù)學(xué)成績(jī),以下是小編精心整理的2017龍東地區(qū)中考數(shù)學(xué)模擬考題,希望能幫到

      32838