精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) >

      第一學(xué)期八年級(jí)上數(shù)學(xué)期中考試

      時(shí)間: 詩(shī)盈1200 分享

        其實(shí)學(xué)習(xí)數(shù)學(xué)有一種技巧的,只要我們領(lǐng)悟到技巧就可以學(xué)習(xí)的很好了,今天小編就給大家來(lái)看看八年級(jí)數(shù)學(xué),歡迎大家閱讀

        初二八年級(jí)上數(shù)學(xué)期中考試卷

        一.選擇(2′×5=10′)

        1.下列方程中,是一元二次方程的是( )

        A. B. C. D.

        2.的一個(gè)有理化因式是( )

        A. B. C. D.

        3.下列語(yǔ)句中,不是命題的是( )

        A.經(jīng)過(guò)一個(gè)點(diǎn)畫一條直線 B.兩點(diǎn)之間,線段最短

        C.同角的余角相等 D.對(duì)頂角不相等

        4.下列二次三項(xiàng)式中,在實(shí)數(shù)范圍內(nèi)不能因式分解的是( )

        A. B. C. D.

        5.當(dāng)a<3時(shí),化簡(jiǎn)的結(jié)果是( )

        A.-1 B.1 C.2a-7 D.7-2a

        二.填空(2′×15=30′)

        6.當(dāng)x 時(shí),代數(shù)式有意義。

        7.比較大小:

        8.計(jì)算:=

        9.解關(guān)于x的方程的根是 。

        10.解關(guān)于x的方程的根是 。

        11.解關(guān)于x的方程的根是 。

        12.某商品連續(xù)兩次降價(jià)10%后的價(jià)格為a元,則該商品的原價(jià)應(yīng)為 。(最后結(jié)果化簡(jiǎn))

        13.當(dāng)k 時(shí),二次三項(xiàng)式在實(shí)數(shù)范圍內(nèi)可以分解因式。

        14.當(dāng)x= 時(shí),的值為0。

        15.已知方程的兩根分別是2和3,則因式分解的結(jié)果是 。

        16.在△ABC中,∠C=90°,∠A,∠B的平分線相交于點(diǎn)O,則∠AOB= 。

        17.最簡(jiǎn)二次根式與是同類二次根式,則x=

        18.已知方程有一根為,則a= 。

        19.已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,則m的最大整數(shù)值是 。

        20.在等腰△ABC中,三邊分別為a,b,c,其中a=5,若關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,則△ABC的周長(zhǎng)為 。

        三.計(jì)算:(5′×2=10′)

        21. 22.

        四.解下列一元二次方程:(5′×4=20′)

        23. 24.

        25. 26.用配方法解方程:

        五.簡(jiǎn)答題(6′×5=30′)

        27.先化簡(jiǎn)再求值:,其中

        28.如圖所示,利用22米長(zhǎng)的墻為一邊,用籬笆圍成一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),中間用籬笆分割出兩個(gè)小長(zhǎng)方形,總共用去籬笆36米,為了使這個(gè)長(zhǎng)方形ABCD的面積為96平方米,問(wèn)AB和BC的邊各應(yīng)是多少?

        29.如圖,AD是△ABC的角平分線,AB=AD,E是AD延長(zhǎng)線上的一點(diǎn),

        ∠3=∠1,求證:DC=BE。

        30.如圖,在△ABC中,∠ABC=45°,在高AD上截取DH=DC,連結(jié)BH并延長(zhǎng)交AC于點(diǎn)E,求證:BH⊥AC。

        31.已知,如圖,在△ABC中,=90°,BD是斜邊AC上的中線,求證:

        八年級(jí)期中試卷答案

        一.選擇(2×5=10)

        1.B 2.B 3.A 4.D 5.D

        二.填空(2×15=30)

        6.>1 7.> 8. 9.x1=0,x2=

        10. 11. x1=0,x2=6 12.0.81a 13.

        14.-5,2 15.-2(x-2)(x-3) 16.135° 17.3,-6

        18. 19.1 20.12

        三.計(jì)算(5×2=10)

        21.解:(2分) (1分)

        (1分)

        (1分)

        22.解:(1分) (1分)

        (1分)

        (1分)

        (1分)

        四.解下列一元二次方程(5×4=20)

        23.解:(1分)

        x-3=6(1分)或x-3=-6(1分)

        x=9(1分)或x=-3(1分)

        24.解:(1分)

        (1分)

        (1分)

        (1分)或(1分)

        25.解:(3分)

        x=13(1分)或x=-2(1分)

        26.解:(2分)

        (1分)

        (1分)或(1分)

        五.簡(jiǎn)答題(6×5=30)

        27.解:(1分)

        (2分)

        (1分)

        (1分)

        =1(1分)

        28.解:設(shè)AB長(zhǎng)為x米,BC長(zhǎng)為(36-3x)米。(1分)

        (2分)

        x=4或x=8(2分)

        因?yàn)锽C<22,所以x=8(1分)

        答:AB長(zhǎng)8米,BC長(zhǎng)12米。(1分)

        29.證:得到1=2(1分)

        證得E=C(2分)

        證得△ABE≌△ADC(2分)

        所以DC=BE(1分)

        30.證:證得BD=AD(1分)

        證得DBH=DAC (1分)

        證得△DBH≌△DAC (2分)

        證得BH┴AC(2分)

        31.證:延長(zhǎng)BD到點(diǎn)E,使BD=DE,聯(lián)結(jié)AE。(1分)

        證得△ADE≌△CDB(2分)

        證得△ABC≌△BAE(2分)

        證得BD=AB(1分)

        八年級(jí)數(shù)學(xué)期中試卷上學(xué)期

        一、選擇題(本大題共6小題,每小題2分,共12分)

        1.下面四個(gè)美術(shù)字中可以看作軸對(duì)稱圖形的是(  )

        A. B. C. D.

        2.下列各組線段能構(gòu)成直角三角形的一組是(  )

        A.5cm,9cm,12cm B.7cm,12cm,13cm

        C.30cm,40cm,50cm D.3cm,4cm,6cm

        3.如圖,已知圖中的兩個(gè)三角形全等,則∠1等于(  )

        A.50° B.58° C.60° D.72°

        4.如圖,AC=AD,BC=BD,則下面說(shuō)法一定正確的是(  )

        A.AB垂直平分CD B.CD垂直平分AB

        C.AB與CD互相垂直平分 D.CD平分∠ACB

        5.如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于12AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為14,BC=8,則AC的長(zhǎng)為(  )

        A.5 B.6 C.7 D.8

        6.如圖,在△ABC中,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,F(xiàn)為BC的中點(diǎn),DE=5,BC=8,則△DEF的周長(zhǎng)是(  )

        A.21 B.18 C.13 D.15

        二、填空題(本大題共10小題,每小題2分,共20分)

        7.等腰三角形的對(duì)稱軸是 .

        8.直角三角形的斜邊長(zhǎng)是5,一直角邊是3,則此三角形的周長(zhǎng)是   .

        9.等腰三角形ABC的周長(zhǎng)為8cm,其中腰長(zhǎng)AB=3cm,則BC= cm.

        10.如圖,∠1=∠2,要利用“AAS”得到△ABD≌△ACD,需要增加的一個(gè)條件是

        (第 10 題) (第 11 題) (第 12 題)

        11.如圖,Rt△ABC中,∠C=90○,∠ABC的平分線交AC于點(diǎn)P,PD⊥AB,垂足為D,若PD=2,則PC= .

        12.如圖,△ABC≌△ADE,若∠C=35°,∠D=75°,∠DAC=25°,則∠BAD= °.

        13.如圖,一個(gè)直徑為8cm的杯子,在它的正中間豎直放一根筷子,筷子露出杯子外1cm,當(dāng)筷子倒向杯壁時(shí)(筷子底端不動(dòng)),筷子頂端剛好觸到杯口,則筷子長(zhǎng)度為 cm.

        14.觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,請(qǐng)你寫出具有以上規(guī)律的第⑥組勾股數(shù):   .

        (第 13 題) (第15題) (第 16 題)

        15.如圖,已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部,點(diǎn)P1與點(diǎn)P關(guān)于OA對(duì)稱,點(diǎn)P2與點(diǎn)P關(guān)于OB對(duì)稱,連接P1P2交OA、OB于E、F,則∠EPF=  °.

        16.如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)O作OD⊥AC于點(diǎn)D,下列四個(gè)結(jié)論:

       ?、貰E=EF-CF;② ;③點(diǎn)O到△ABC各邊的距離相等;④設(shè)OD=m,AE+AF=n,則 ,其中正確的結(jié)論是   .(填所有正確的序號(hào))

        三、解答題(本大題共10小題,共68分)

        17.(6分)已知:如圖,點(diǎn)E、F在線段BD上,BE=DF,AB∥CD,∠A=∠C.求證:△ABF≌△CDE.

        18.(6分)如圖,網(wǎng)格中的△ABC與△DEF為軸對(duì)稱圖形.

        (1)利用網(wǎng)格線作出△ABC與△DEF的對(duì)稱軸l;

        (2)結(jié)合所畫圖形,在直線l上畫出點(diǎn)P,使PA+PC最小;

        (3)如果每一個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)直接寫出△ABC的

        面積= .

        19.(6分)在七年級(jí)我們就學(xué)過(guò)用一副三角板畫出一些特殊度數(shù)的角.在八年級(jí)第二章,我們學(xué)會(huì)了一些基本的尺規(guī)作圖,這些特殊的角也能用尺規(guī)作出.下面請(qǐng)各位同學(xué)開動(dòng)腦筋,只用直尺和圓規(guī)完成下列作圖.

        已知:如圖,射線OA.

        求作:∠AOB,使得∠AOB在射線OA的上方,且∠AOB=45°(保留作圖痕跡,不寫作法).

        20.(6分)證明:有兩個(gè)角相等的三角形是等腰三角形.

        已知:

        求證:

        證明:

        21.(7分)如圖,△ABC中,AD⊥BC,垂足為D.如果AD=6,BD=9,CD=4,那么∠BAC是直角嗎?證明你的結(jié)論.

        22.(8分)如圖,△ABC為等邊三角形,BD平分∠ABC交AC于點(diǎn)D,DE∥BC交AB于點(diǎn)E.

        (1)求證:△ADE是等邊三角形.

        (2)求證:AE = AB.

        23.(6分)如圖,折疊長(zhǎng)方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE.已知該紙片寬AB=3cm,長(zhǎng)BC=5cm.求EC的長(zhǎng).

        24.(6分)如圖,已知△ABC的角平分線BD與∠ACB的外角平分線交于點(diǎn)D,DE∥BC交AB于點(diǎn)E,交AC于點(diǎn)F.

        求證:BE−CF =EF.

        25.(8分)在△ABC中,∠BAC=90°,AB=AC.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為邊在AB的右側(cè)作△ADE,且∠DAE=90°,AD=AE.連接CE.

        (1)如圖1,若點(diǎn)D在BC邊上,則∠BCE= º;

        (2)如圖2,若點(diǎn)D在BC的延長(zhǎng)線上運(yùn)動(dòng).

       ?、?ang;BCE的度數(shù)是否發(fā)生變化?請(qǐng)說(shuō)明理由;

       ?、谌鬊C=3,CD=6,則△ADE的面積為 .

        26.(9分)【新知學(xué)習(xí)】

        如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么我們就把這樣的三角形叫做“智慧三角形”.

        【簡(jiǎn)單運(yùn)用】

        (1)下列三個(gè)三角形,是智慧三角形的是 (填序號(hào));

        (2)如圖,已知等邊三角形ABC,請(qǐng)用刻度尺在該三角形邊上找出所有滿足條件的點(diǎn)D,使△ABD為“智慧三角形”,并寫出作法;

        【深入探究】

        (3)如圖,在正方形ABCD中,點(diǎn)E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF= CD,試判斷△AEF是否為“智慧三角形”,并說(shuō)明理由;

        【靈活應(yīng)用】

        (4)如圖,等邊三角形ABC邊長(zhǎng)5cm.若動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿△ABC的邊AB-BC-CA運(yùn)動(dòng).若另一動(dòng)點(diǎn)Q以2cm/s的速度從點(diǎn)B出發(fā),沿邊BC-CA-AB運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q首次回到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為 (s)時(shí),△PBQ為“智慧三角形”.

        八年級(jí)數(shù)學(xué)評(píng)分標(biāo)準(zhǔn)

        一、選擇題(本大題共6小題,每題2分,共12分)

        題號(hào) 1 2 3 4 5 6

        答案 D C B A B C

        二、填空題(本大題共10小題,每題2分,共20分)

        7.頂角平分線所在直線(答案不唯一); 8.12; 9. 2或3;

        10.∠B =∠C; 11.2; 12.45; 13.8.5;

        14.13,84,85 ; 15.120; 16.①②③④.

        三、解答題(本大題共10小題,共68分)

        17.(6分)

        證明:∵BE=DF

        ∴BE+EF=DF+EF

        即BF=DE…………………2分

        ∵AB∥CD

        ∴∠B=∠D…………………3分

        在△ABF和△CDE中

        ∠A=∠C.

        ∠B=∠D

        BF=DE

        ∴△ABF≌△CDE(AAS)…………………6分

        18.(6分)

        解:(1)作圖正確,并標(biāo)出l; ………2分

        (2)正確標(biāo)出點(diǎn)P位置;…………………4分

        (3) 3 …………………6分

        ∴∠AOB即為所作.

        正確作圖…………………6分

        (作法不唯一)

        20.(6分)

        已知:如圖,在△ABC中,∠B=∠C.

        求證:△ABC是等腰三角形. …………………2分

        證明:作△ABC的角平分線AD.…………………3分

        得∠BAD=∠CAD

        在△ABD和△ACD中

        ∠B=∠C

        ∠BAD=∠CAD

        AD=AD

        ∴△BAD≌△CAD(AAS)…………………5分

        ∴AB=AC

        ∴△ABC是等腰三角形 …………………6分

        21.(7分)

        解:是直角.∵AD⊥BC∴∠ADB=∠ADC=90°

        ∴AD2+BD2=AB2,AD2+CD2=AC2 …………………2分

        ∵AD=6,BD=9,CD=4

        ∴AB2=117,AC2=52, …………………4分

        ∵BC=BD+CD=13

        ∴AB2+AC2=BC2 ………………… 6分

        ∴∠BAC=90° …………………7分

        22.(8分)

        證明:(1)∵△ABC為等邊三角形

        ∴∠A=∠ABC=∠C=60° …………………1分

        ∵DE∥BC

        ∴∠AED=∠ABC=60º,∠ADE=∠C=60º…………………2分

        ∴∠AED=∠ADE=∠A=60º

        ∴△ADE是等邊三角形 …………………4分

        (2)∵△ABC為等邊三角形

        ∴AB=BC=AC

        ∵AB=BC,BD平分∠ABC

        ∴AD= AC …………………6分

        ∵△ADE是等邊三角形

        ∴AE=AD

        ∴AE= AB…………………8分

        (方法不唯一)

        23.(6分)

        解:由折疊可知AD=AF=5cm,DE=EF…………………1分

        ∵∠B=90°∴ AB2+BF2= AF2,

        ∵AB=3cm,AF=5cm

        ∴BF=4cm,∵BC=5cm,∴FC=1cm…………………3分

        ∵∠C=90°,∴ EC2+FC2= EF2

        設(shè)EC=x,則DE=EF=3-x

        ∴(3-x)2=12+x2…………………5分

        ∴ x= …………………6分

        24.(6分)

        證明:∵BD平分∠ABC

        ∴∠ABD=∠CBD …………………1分

        ∵DE∥BC

        ∴∠EDB=∠CBD …………………2分

        ∴∠ABD=∠EDB …………………3分

        ∴DE=BE …………………4分

        同理可證 DF=CF…………………5分

        ∵EF=DE﹣DF

        ∴EF=BE﹣CF …………………6分

        25.(8分)

        解:(1)90…………………2分

        (2)①不發(fā)生變化.

        ∵AB=AC,∠BAC=90°

        ∴∠ABC=∠ACB=45°…………………3分

        ∵∠BAC=∠DAE=90°

        ∴∠BAC+∠DAC=∠DAE+∠DAC

        ∴∠BAD=∠CAE…………………4分

        在△ACE和△ABD中

        AC=AB

        ∠CAE=∠BAD

        AE=AD

        ∴△ACE≌△ABD…………………5分

        ∴∠ACE=∠ABD=45°

        ∴∠BCE=∠BCA+∠ACE=45°+45°=90°

        ∴∠BCE的度數(shù)不變,為90°…………………6分

       ?、?…………………8分

        26.(9分)

        (1)①…………………1分

        (2)用刻度尺分別量取AC、BC的中點(diǎn)D1、D2.

        點(diǎn)D1、D2即為所求.…………………3分

        (正確畫出一個(gè)點(diǎn)并寫出作法得1分)

        (3)△AEF是“智慧三角形”…………………4分

        理由如下:如圖,設(shè)正方形的邊長(zhǎng)為4a

        ∵E是BC的中點(diǎn)

        ∴BE=EC=2a

        ∵CF= CD

        ∴FC=a,DF=4a﹣a=3a …………………5分

        在Rt△ABE中,AE2=(4a)2+(2a)2=20a2

        在Rt△ECF中,EF2=(2a)2+a2=5a2

        在Rt△ADF中,AF2=(4a)2+(3a)2=25a2

        ∴AE2+EF2=AF2

        ∴△AEF是直角三角形,∠AEF=90°

        ∵直角三角形斜邊AF上的中線等于AF的一半

        ∴△AEF為“智慧三角形”…………………7分

        初中八年級(jí)數(shù)學(xué)上冊(cè)期中試題

        一、選擇題(本大題共10小題,每小題2分,共20分)

        1.下面四個(gè)圖形分別是低碳、節(jié)水、節(jié)能和綠色食品標(biāo)志,在這四個(gè)標(biāo)志中,是軸對(duì)稱圖形的

        A. B. C. D.

        2.在平面直角坐標(biāo)系中,點(diǎn)P(1,﹣2)的位置在

        A.第一象限 B.第二象限 C.第三象限 D.第四象限

        3.等腰三角形兩邊長(zhǎng)分別為2和4,則這個(gè)等腰三角形的周長(zhǎng)為

        A.6 B.8 C.10 D.8或10

        4.今年10月環(huán)太湖中長(zhǎng)跑中參賽選手達(dá)到21780人,這個(gè)數(shù)精確到千位表示約為(  )

        A.2.2×104 B.22000 C.2.1×104 D.22

        5.如圖,在數(shù)軸上表示實(shí)數(shù)7+1的點(diǎn)可能是

        A.P B.Q C.R D.S

        6.如圖是蹺蹺板的示意圖,支柱OC與地面垂直,點(diǎn)O是AB的中點(diǎn),AB繞著點(diǎn)O上下轉(zhuǎn)動(dòng).當(dāng)A端落地時(shí),∠OAC=20°,蹺蹺板上下可轉(zhuǎn)動(dòng)的最大角度(即∠A′OA)是

        A.80° B.60° C.40° D.20°

        7.如圖,將一個(gè)三角形紙片ABC沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,則下列結(jié)論一定正確的是

        A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB

        8.由下列條件不能判定△ABC為直角三角形的是

        A.a= ,b= ,c= B.∠A+∠B=∠C

        C.∠A:∠B:∠C=1:3:2 D.(b+c)(b﹣c)=a2

        9.如圖,已知在△ABC中,CD是AB邊上的高線,BE平分∠ABC,交CD于點(diǎn)E,BC=6,DE=3,則△BCE的面積等于

        A.6 B.8 C.9 D.18

        10.如圖,在四邊形ABCD中,AB=AC=BD,AC與BD相交于H,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中真命題的個(gè)數(shù)是

        A.1 B.2 C.3 D.4

        二、填空題(本大題共8小題,每空2分,共16分)

        11.81的算術(shù)平方根是 ▲ .

        12.在平面直角坐標(biāo)系中,點(diǎn)P(-1,2)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為 ▲ .

        13.如圖,在Rt △ABC中,CD是斜邊AB上的中線,若AB=20,則CD= ▲ .

        14.如圖,△ABC是邊長(zhǎng)為6的等邊三角形,D是BC上一點(diǎn),BD=2,DE⊥BC交AB于點(diǎn)E,則線段AE= ▲ .

        15.如圖,三個(gè)正方形中,其中兩個(gè)正方形的面積分別是100,36,則字母A所代表的正方形的邊長(zhǎng)是  ▲  .

        16.如圖,在△ABC中,AB=AC,∠B=66°,D,E分別為AB,BC上一點(diǎn),AF∥DE,若∠BDE=30°,則∠FAC的度數(shù)為 ▲ .

        17.如圖,數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別中1和 ,若點(diǎn)A是線段BC的中點(diǎn),則點(diǎn)C所表示的數(shù)是 ▲  .

        18.已知:如圖,ΔABC中,∠A=45°,AB=6,AC= ,點(diǎn)D、E、F分別是三邊AB、BC、CA上的點(diǎn),則ΔDEF 周長(zhǎng)的最小值是 ▲  .

        三、解答題(本大題共9題,共64分)

        19.(8分)(1)計(jì)算: ; (2)已知:4x2=20,求x的值.

        20.(4分)如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.

        21.(6分)如圖,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.

        (1)求線段AD的長(zhǎng);(2)求△ABC的周長(zhǎng).

        22.(6分)已知點(diǎn)A(1,2a-1),點(diǎn)B(-a,a-3) .

       ?、偃酎c(diǎn)A在第一、三象限角平分線上,求a值.

       ?、谌酎c(diǎn)B到x軸的距離是到y(tǒng)軸距離的2倍,求點(diǎn)B所在的象限.

        23.(8分)如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點(diǎn)A.按下列要求畫圖:

        (1)在圖①中,以格點(diǎn)為頂點(diǎn),AB為一邊畫一個(gè)等腰三角形ABC;

        (2)在圖②中,以格點(diǎn)為頂點(diǎn),AB為一邊畫一個(gè)正方形;

        (3)在圖③中,以點(diǎn)A為一個(gè)頂點(diǎn),另外三個(gè)頂點(diǎn)也在格點(diǎn)上,畫一個(gè)面積最大的正方形,這個(gè)正方形的面積=   .

        24.(8分)如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.

        (1)求證:△DEF是等腰三角形;(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù).

        25.(8分)如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

        (1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;

        (2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值.

        26.(8分)如圖,在Rt△ABC中,∠ACB=90°,AD、BE、CF分別是三邊上的中線.

        (1)若AC=1,BC= .求證:AD2+CF2=BE2;

        (2)是否存在這樣的Rt△ABC,使得它三邊上的中線AD、BE、CF的長(zhǎng)恰好是一組勾股數(shù)?請(qǐng)說(shuō)明理由.(提示:滿足關(guān)系a2+b2=c2的3個(gè)正整數(shù)a、b、c稱為勾股數(shù).)

        27.(8分)定義:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.

        (1)如圖1,在△ABC中,AB=AC,點(diǎn)D在AC邊上,且AD=BD=BC,求∠A的大小;

        (2)在圖1中過(guò)點(diǎn)C作一條線段CE,使BD,CE是△ABC的三等分線;在圖2中畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);

        (3)在△ABC中,∠B=30°,AD和DE是△ABC的三分線,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且AD=BD,DE=CE,請(qǐng)直接寫出∠C所有可能的值.


      第一學(xué)期八年級(jí)上數(shù)學(xué)期中考試相關(guān)文章:

      1.八年級(jí)上冊(cè)數(shù)學(xué)期中考試試卷分析

      2.八年級(jí)上冊(cè)數(shù)學(xué)期中測(cè)試卷及答案

      3.八年級(jí)數(shù)學(xué)上冊(cè)期末試卷及答案

      4.八年級(jí)上冊(cè)數(shù)學(xué)期末試卷附答案

      5.新人教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷

      4149758