精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 > 揚州中學2016-2017學年高二期中數(shù)學文理科試卷

      揚州中學2016-2017學年高二期中數(shù)學文理科試卷

      時間: 夏萍1132 分享

      揚州中學2016-2017學年高二期中數(shù)學文理科試卷

        高二的期中考試是除了期末考試中最重要的考試,下面學習啦的小編將為大家?guī)頁P州中學的高二數(shù)學文理科的試卷分析,希望能夠幫助到大家。

        揚州中學2016-2017學年高二期中數(shù)學文科試卷

      一.填空題(每題5分,合計70分)

        1. 設全集,集合,,則 ▲ .

        2. 已知復數(shù)(i為虛數(shù)單位),則z的虛部為 ▲ .

        3.已知函數(shù),且,則必過定點 ▲ .

        4.命題“”的否定是 ▲

        5.“” 是 “” 的 ▲ 條件.

        6.若在上為增函數(shù),則a的取值范圍是 ▲ .

        7. 從推廣到第個等式為 ▲ .

        8. 若內(nèi)切圓半徑為,三邊長為,則的面積將這個結(jié)論類比到空間:若四面體內(nèi)切球半徑為,四個面的面積為,則四面體的體積= ▲ .

        9.已知,則的最大值為 ▲ .

        10.若函數(shù)定義在上的奇函數(shù),且在上是增函數(shù),又,則不等式的解集為 ▲ .

        11.設函數(shù)則滿足的的取值范圍是 ▲ .

        12.設為實常數(shù),是定義在上的奇函數(shù),當時,,若對一切成立,則的取值范圍為在上有最大值,則實數(shù)的取值范圍是 ▲ .

        14. 已知函數(shù),若對任意實數(shù),關于的方程最多有兩個不同的實數(shù)解,則實數(shù)的取值范圍是 $ ▲ .

        二.解答題

        15.已知集合,

        (1)當時,求;(2)若,求實數(shù)的取值范圍.

        ,,為虛數(shù)單位.

        (1)若復數(shù)對應的點在第四象限,求實數(shù)的取值范圍;

        (2)若,求的共軛復數(shù).

        17. 已知命題指數(shù)函數(shù)在上單調(diào)遞減,命題關于的方程的兩個實根均大于3.若或為真,且為假,求實數(shù)的取值范圍.

        18. 已知函數(shù)

        (1)記函數(shù)求函數(shù)的值域;

        (2) 若不等式有解,求實數(shù)的取值范圍.

        19.某制藥廠生產(chǎn)某種顆粒狀粉劑,由醫(yī)藥代表負責推銷,若每包藥品的生產(chǎn)成本為元,推銷費用為元,預計當每包藥品銷售價為元時,一年的市場銷售量為萬包,若從民生考慮,每包藥品的售價不得高于生產(chǎn)成本的,但為了鼓勵藥品研發(fā),每包藥品的售價又不得低于生產(chǎn)成本的

        (1) 寫出該藥品一年的利潤 (萬元)與每包售價的函數(shù)關系式,并指出其定義域;

        (2) 當每包藥品售價為多少元時,年利潤最大,最大值為多少?

        20.已知函數(shù).

        (1)求函數(shù)的圖象在處$的切線方程;

        (2)若$函數(shù)在上有兩個不同的零點,求實數(shù)的取值范圍;

        (3)是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.

        (參考數(shù)據(jù):,).

        江蘇省揚州中學2016——2017年度高二下學期數(shù)學(文)期中試卷

        參考答案

        1. ; 2. ; 3. ; $ 4.; 5. 充分不必要;

        6. ; 7. ;

        8. ; 9. ; 10. 或-;

        11. ; 12. ; 13. ;

        14.

        15. 解:(1). (2)實數(shù)的取值范圍是由題意得解得

        (2)

        17. 解:,

        記,由的兩根均大于得:,所以,.

        由于或為真,且為假,所以,或.

        18.解:(1)定義域,∴,

        對稱軸為∴的值域為

        (2)∵有解,∴,令,∴,

        ∴

        19.解: (1)由題意,

        (2)

       ?、?當時,,在上恒成立,即為減函數(shù),所以,萬元

       ?、诋敃r,,當時,

        當時,,即在上為增函數(shù),在

        上為減函數(shù),所以,萬元

        20.解:(1)因為,所以,則所求切線的斜率為, ……………2分

        又,故所求切線的方程為. ................4分

        (2)因為,則由題意知方程在上有兩個不同的根.

        由,得, ……………6分

        令,則,由,解得.

        當時,,單調(diào)遞減;當時,,單調(diào)遞增,

        所以當時,取得最小值為. ……………8分

        又,(圖象如右圖所示),

        所以,解得. ……………10分

        (3)假設存在實數(shù)滿足題意,則不等式對恒成立.

        即對恒成立.

        令,則, ……12分

        令,則,

        因為在上單調(diào)遞增,,,且的圖象在上不間斷,所以存在,使得,即,則,

        所以當時,單調(diào)遞減;當時,單調(diào)遞增,

        則取到最小值,…14分

        所以,即在區(qū)間內(nèi)單調(diào)遞增.

        所以,

        所以存在實數(shù)滿足題意,且最大整數(shù)的值為. ……………16分

      點擊下頁查看更多揚州中學2016-2017學年高二期中數(shù)學理科試卷

      3786867