精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)

      時(shí)間: 贊銳20 分享

      學(xué)習(xí)并領(lǐng)悟堅(jiān)強(qiáng),做一個(gè)對(duì)生活充滿自信的人,忘記過(guò)去把握此刻,人生依舊要堅(jiān)強(qiáng)地走下去。卑微的小草,正正因它學(xué)習(xí)并領(lǐng)悟了堅(jiān)強(qiáng),最后成為了原野。所以學(xué)習(xí)對(duì)我們很重要,下面是小編給大家?guī)?lái)的高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn),希望能幫助到你!

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)

      1、圓的定義

      平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

      當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

      (3)求圓方程的方法:

      一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

      3、直線與圓的位置關(guān)系

      直線與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線,圓,圓心到l的距離為,則有

      (2)過(guò)圓外一點(diǎn)的切線:

      ①k不存在,驗(yàn)證是否成立

      ②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

      (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系

      通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

      設(shè)圓

      兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

      當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

      當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

      當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

      當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

      注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

      圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)歸納

      1、向量的加法

      向量的加法滿足平行四邊形法則和三角形法則。

      AB+BC=AC。

      a+b=(x+x',y+y')。

      a+0=0+a=a。

      向量加法的運(yùn)算律:

      交換律:a+b=b+a;

      結(jié)合律:(a+b)+c=a+(b+c)。

      2、向量的減法

      如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

      AB-AC=CB.即“共同起點(diǎn),指向被減”

      a=(x,y)b=(x',y')則a-b=(x-x',y-y').

      4、數(shù)乘向量

      實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

      當(dāng)λ>0時(shí),λa與a同方向;

      當(dāng)λ<0時(shí),λa與a反方向;

      當(dāng)λ=0時(shí),λa=0,方向任意。

      當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

      注:按定義知,如果λa=0,那么λ=0或a=0。

      實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

      當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

      當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

      數(shù)與向量的乘法滿足下面的運(yùn)算律

      結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

      向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

      數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

      數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

      3、向量的的數(shù)量積

      定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

      定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

      向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

      向量的數(shù)量積的運(yùn)算率

      a·b=b·a(交換率);

      (a+b)·c=a·c+b·c(分配率);

      向量的數(shù)量積的性質(zhì)

      a·a=|a|的平方。

      a⊥b〈=〉a·b=0。

      |a·b|≤|a|·|b|。

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)匯總

      異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

      異面直線性質(zhì):既不平行,又不相交.

      異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

      異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直.

      求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);αβ

      相交——有一條公共直線.α∩β=b

      2、空間中的平行問(wèn)題

      (1)直線與平面平行的判定及其性質(zhì)

      線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

      線線平行線面平行

      線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,

      那么這條直線和交線平行.線面平行線線平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個(gè)平面平行的判定定理

      (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      (線面平行→面面平行),

      (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.

      (線線平行→面面平行),

      (3)垂直于同一條直線的兩個(gè)平面平行,

      兩個(gè)平面平行的性質(zhì)定理

      (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)

      (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)

      3、空間中的垂直問(wèn)題

      (1)線線、面面、線面垂直的定義

      兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直.

      線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直.

      平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.

      (2)垂直關(guān)系的判定和性質(zhì)定理

      線面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.

      性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.

      面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.

      4、空間角問(wèn)題

      (1)直線與直線所成的角

      兩平行直線所成的角:規(guī)定為.

      兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

      兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

      (2)直線和平面所成的角

      平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

      平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.

      在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

      在解題時(shí),注意挖掘題設(shè)中主要信息:

      (1)斜線上一點(diǎn)到面的垂線;

      (2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

      求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

      垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

      高二數(shù)學(xué)關(guān)鍵知識(shí)點(diǎn)相關(guān)文章:

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

      高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

      高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

      高中高二數(shù)學(xué)重要知識(shí)點(diǎn)口訣

      高二數(shù)學(xué)復(fù)習(xí)必背知識(shí)點(diǎn)歸納

      1069486