精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

      高二數(shù)學知識點總結(jié)歸納

      時間: 淑娟0 分享

      數(shù)學依舊是高考中重難點科目,要學好數(shù)學不是一件容易的事,平常得多學多練才行。今天小編在這給大家整理了高二數(shù)學知識點總結(jié),接下來隨著小編一起來看看吧!

      高二數(shù)學知識點總結(jié)(一)

      【一】

      一、集合概念

      (1)集合中元素的特征:確定性,互異性,無序性。

      (2)集合與元素的關(guān)系用符號=表示。

      (3)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實數(shù)集。

      (4)集合的表示法:列舉法,描述法,韋恩圖。

      (5)空集是指不含任何元素的集合。

      空集是任何集合的子集,是任何非空集合的真子集。

      函數(shù)

      一、映射與函數(shù):

      (1)映射的概念:(2)一一映射:(3)函數(shù)的概念:

      二、函數(shù)的三要素:

      相同函數(shù)的判斷方法:①對應法則;②定義域(兩點必須同時具備)

      (1)函數(shù)解析式的求法:

      ①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

      (2)函數(shù)定義域的求法:

      ①含參問題的定義域要分類討論;

      ②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。

      (3)函數(shù)值域的求法:

      ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;

      ②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

      ④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

      ⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;

      ⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;

      ⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

      ⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。

      【二】

      函數(shù)的單調(diào)性、奇偶性、周期性

      單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。

      判定方法有:定義法(作差比較和作商比較)

      導數(shù)法(適用于多項式函數(shù))

      復合函數(shù)法和圖像法。

      應用:比較大小,證明不等式,解不等式。

      奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

      f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

      判別方法:定義法,圖像法,復合函數(shù)法

      應用:把函數(shù)值進行轉(zhuǎn)化求解。

      周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

      其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

      應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。

      四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

      常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)

      平移變換y=f(x)→y=f(x+a),y=f(x)+b

      注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。

      (ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。

      對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱

      y=f(x)→y=-f(x),關(guān)于x軸對稱

      y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

      y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))

      伸縮變換:y=f(x)→y=f(ωx),

      y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

      一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;

      【三】

      (1)定義:

      (2)函數(shù)存在反函數(shù)的條件:

      (3)互為反函數(shù)的定義域與值域的關(guān)系:

      (4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。

      (5)互為反函數(shù)的圖象間的關(guān)系:

      (6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;

      (7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。

      七、常用的初等函數(shù):

      (1)一元一次函數(shù):

      (2)一元二次函數(shù):

      一般式

      兩點式

      頂點式

      二次函數(shù)求最值問題:首先要采用配方法,化為一般式,

      有三個類型題型:

      (1)頂點固定,區(qū)間也固定。如:

      (2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內(nèi),何時在區(qū)間之外。

      (3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).

      等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根

      注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結(jié)果,在令和檢查端點的情況。

      (3)反比例函數(shù):

      (4)指數(shù)函數(shù):

      指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0

      (5)對數(shù)函數(shù):

      對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0

      高二數(shù)學知識點總結(jié)(二)

      【一】

      (1)算法概念:在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.

      (2)算法的特點:

      ①有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.

      ②確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應當是模棱兩可.

      ③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.

      ④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.

      ⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.

      【二】

      一、直線與圓:

      1、直線的傾斜角的范圍是

      在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

      過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

      3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

      ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

      4、直線與直線的位置關(guān)系:

      (1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

      5、點到直線的距離公式;

      兩條平行線與的距離是

      6、圓的標準方程:.⑵圓的一般方程:

      注意能將標準方程化為一般方程

      7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

      9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

      二、圓錐曲線方程:

      1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

      2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

      3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

      4、直線被圓錐曲線截得的弦長公式:

      5、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).

      2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

      3、模的計算:|a|=.算模可以先算向量的平方

      4、向量的運算過程中完全平方公式等照樣適用:

      三、直線、平面、簡單幾何體:

      1、學會三視圖的分析:

      2、斜二測畫法應注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側(cè))面積與體積公式:

      ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

      ⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      高二數(shù)學知識點總結(jié)(三)

      數(shù)列定義:

      如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

      等差數(shù)列的通項公式為:an=a1+(n-1)d(1)

      前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

      以上n均屬于正整數(shù)。

      解釋說明:

      從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0。

      在等差數(shù)列中,等差中項:一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數(shù)列的平均數(shù)。

      且任意兩項am,an的關(guān)系為:an=am+(n-m)d

      它可以看作等差數(shù)列廣義的通項公式。

      推論公式:

      從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

      若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。

      基本公式:

      和=(首項+末項)×項數(shù)÷2

      項數(shù)=(末項-首項)÷公差+1

      首項=2和÷項數(shù)-末項

      末項=2和÷項數(shù)-首項

      末項=首項+(項數(shù)-1)×公差

      高二數(shù)學知識點總結(jié)(四)

      【一】

      分層抽樣

      先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

      兩種方法

      1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

      2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

      3.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

      分層標準

      (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

      (2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

      (3)以那些有明顯分層區(qū)分的變量作為分層變量。

      分層的比例問題

      (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

      (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結(jié)構(gòu)。

      【二】

      (1)定義:

      對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。

      (2)函數(shù)的零點與相應方程的根、函數(shù)的圖象與x軸交點間的關(guān)系:

      方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。

      (3)函數(shù)零點的判定(零點存在性定理):

      如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

      二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關(guān)系

      三二分法

      對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

      1、函數(shù)的零點不是點:

      函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標,所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標。

      2、對函數(shù)零點存在的判斷中,必須強調(diào):

      (1)、f(x)在[a,b]上連續(xù);

      (2)、f(a)·f(b)<0;

      (3)、在(a,b)內(nèi)存在零點。

      這是零點存在的一個充分條件,但不必要。

      3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。

      利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點。

      四判斷函數(shù)零點個數(shù)的常用方法

      1、解方程法:

      令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

      2、零點存在性定理法:

      利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。

      3、數(shù)形結(jié)合法:

      轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。

      已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

      1、直接法:

      直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

      2、分離參數(shù)法:

      先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

      3、數(shù)形結(jié)合法:

      先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

      高二數(shù)學知識點總結(jié)(五)

      上學期數(shù)學

      一、不等式的性質(zhì)

      1.兩個實數(shù)a與b之間的大小關(guān)系

      2.不等式的性質(zhì)

      (4)(乘法單調(diào)性)

      3.絕對值不等式的性質(zhì)

      (2)如果a>0,那么

      (3)|a?b|=|a|?|b|.

      (5)|a|-|b|≤|a±b|≤|a|+|b|.

      (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

      二、不等式的證明

      1.不等式證明的依據(jù)

      (2)不等式的性質(zhì)(略)

      (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

      ②a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)

      2.不等式的證明方法

      (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

      用比較法證明不等式的步驟是:作差——變形——判斷符號.

      (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

      (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

      證明不等式除以上三種基本方法外,還有反證法、數(shù)學歸納法等.

      三、解不等式

      1.解不等式問題的分類

      (1)解一元一次不等式.

      (2)解一元二次不等式.

      (3)可以化為一元一次或一元二次不等式的不等式.

      ①解一元高次不等式;

      ②解分式不等式;

      ③解無理不等式;

      ④解指數(shù)不等式;

      ⑤解對數(shù)不等式;

      ⑥解帶絕對值的不等式;

      ⑦解不等式組.

      2.解不等式時應特別注意下列幾點:

      (1)正確應用不等式的基本性質(zhì).

      (2)正確應用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.

      (3)注意代數(shù)式中未知數(shù)的取值范圍.

      3.不等式的同解性

      (5)|f(x)|<g(x)與-g(x)<f(x)0)

      (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

      (9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0<aag(x)與f(x)<g(x)同< p="">

      四、《不等式》

      解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

      高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

      證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

      直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

      還有重要不等式,以及數(shù)學歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

      五、《立體幾何》

      點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

      垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

      方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

      立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

      異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

      六、《平面解析幾何》

      有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。

      笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應,開創(chuàng)幾何新途徑。

      兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

      三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

      四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復數(shù)求。

      解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學

      七、《排列、組合、二項式定理》

      加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

      兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應用問題須轉(zhuǎn)化。

      排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

      不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

      關(guān)于二項式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

      八、《復數(shù)》

      虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。

      對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

      箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

      代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

      一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領(lǐng)大,復數(shù)相等來轉(zhuǎn)化。

      利用方程思想解,注意整體代換術(shù)。幾何運算圖上看,加法平行四邊形,

      減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。

      三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

      輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

      兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。

      平方關(guān)系:

      sin^2α+cos^2α=1

      1+tan^2α=sec^2α

      1+cot^2α=csc^2α

      ·積的關(guān)系:

      sinα=tanα×cosα

      cosα=cotα×sinα

      tanα=sinα×secα

      cotα=cosα×cscα

      secα=tanα×cscα

      cscα=secα×cotα

      ·倒數(shù)關(guān)系:

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      商的關(guān)系:

      sinα/cosα=tanα=secα/cscα

      cosα/sinα=cotα=cscα/secα

      直角三角形ABC中,

      角A的正弦值就等于角A的對邊比斜邊,

      余弦等于角A的鄰邊比斜邊

      正切等于對邊比鄰邊,

      ·[1]三角函數(shù)恒等變形公式

      ·兩角和與差的三角函數(shù):

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      ·三角和的三角函數(shù):

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      ·輔助角公式:

      Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

      sint=B/(A2+B2)^(1/2)

      cost=A/(A2+B2)^(1/2)

      tant=B/A

      Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

      ·倍角公式:

      sin(2α)=2sinα·cosα=2/(tanα+cotα)

      cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

      tan(2α)=2tanα/[1-tan2(α)]

      ·三倍角公式:

      sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

      cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

      tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

      ·半角公式:

      sin(α/2)=±√((1-cosα)/2)

      cos(α/2)=±√((1+cosα)/2)

      tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

      ·降冪公式

      sin2(α)=(1-cos(2α))/2=versin(2α)/2

      cos2(α)=(1+cos(2α))/2=covers(2α)/2

      tan2(α)=(1-cos(2α))/(1+cos(2α))

      ·萬能公式:

      sinα=2tan(α/2)/[1+tan2(α/2)]

      cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

      tanα=2tan(α/2)/[1-tan2(α/2)]

      ·積化和差公式:

      sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

      cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

      cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

      sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

      ·和差化積公式:

      sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

      sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

      cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

      cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

      ·推導公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos2α

      1-cos2α=2sin2α

      1+sinα=(sinα/2+cosα/2)2

      高二數(shù)學知識點總結(jié)歸納相關(guān)文章

      高二數(shù)學知識點總結(jié)

      高二數(shù)學推理知識點大總結(jié)

      高二數(shù)學考點知識點總結(jié)復習大綱

      高二數(shù)學上冊知識點總結(jié)與復習方法

      2018高二數(shù)學會考知識點總結(jié)

      高二數(shù)學常考知識點總結(jié)

      高二數(shù)學知識點小結(jié)

      職業(yè)高中高二數(shù)學知識點

      高二文科數(shù)學知識點匯總

      高二數(shù)學上下學期知識點復習提綱

      471454