精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高考輔導(dǎo)資料>

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)

      時(shí)間: 維維4587 分享

      讀書(shū)能獲得知識(shí);但更有用的知識(shí)對(duì)世界的認(rèn)識(shí)卻只能通過(guò)研究各種各樣的人才能獲得。下面小編給大家分享一些蘇教版高中必修二數(shù)學(xué)知識(shí),希望能夠幫助大家,歡迎閱讀!

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇1

      1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      (2)棱錐

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

      (3)棱臺(tái):

      幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:底面是全等的圓;母線(xiàn)與軸平行;軸與底面圓的半徑垂直;側(cè)面展開(kāi)圖是一個(gè)矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:底面是一個(gè)圓;母線(xiàn)交于圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)扇形.

      (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:上下底面是兩個(gè)圓;側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)弓形.

      (7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

      俯視圖(從上向下)

      注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.

      3、空間幾何體的直觀(guān)圖——斜二測(cè)畫(huà)法

      斜二測(cè)畫(huà)法特點(diǎn):原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

      原來(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半.

      4、柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線(xiàn))

      (3)柱體、錐體、臺(tái)體的體積公式

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇2

      直線(xiàn)與方程

      (1)直線(xiàn)的傾斜角

      定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角.特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

      (2)直線(xiàn)的斜率

      定義:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率.直線(xiàn)的斜率常用k表示.即.斜率反映直線(xiàn)與軸的傾斜程度.

      當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

      過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:

      注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到.

      (3)直線(xiàn)方程

      點(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)

      注意:當(dāng)直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1.

      當(dāng)直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

      斜截式:,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b

      兩點(diǎn)式:()直線(xiàn)兩點(diǎn),

      截矩式:

      其中直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

      一般式:(A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      (4)平行于x軸的直線(xiàn):(b為常數(shù));平行于y軸的直線(xiàn):(a為常數(shù));

      (5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)

      (一)平行直線(xiàn)系

      平行于已知直線(xiàn)(是不全為0的常數(shù))的直線(xiàn)系:(C為常數(shù))

      (二)垂直直線(xiàn)系

      垂直于已知直線(xiàn)(是不全為0的常數(shù))的直線(xiàn)系:(C為常數(shù))

      (三)過(guò)定點(diǎn)的直線(xiàn)系

      ()斜率為k的直線(xiàn)系:,直線(xiàn)過(guò)定點(diǎn);

      ()過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為

      (為參數(shù)),其中直線(xiàn)不在直線(xiàn)系中.

      (6)兩直線(xiàn)平行與垂直

      注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否.

      (7)兩條直線(xiàn)的交點(diǎn)

      相交

      交點(diǎn)坐標(biāo)即方程組的一組解.

      方程組無(wú)解;方程組有無(wú)數(shù)解與重合

      (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)

      (9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離

      (10)兩平行直線(xiàn)距離公式

      在任一直線(xiàn)上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解.

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇3

      圓的方程

      1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

      當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

      (3)求圓方程的方法

      一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇4

      直線(xiàn)與圓的位置關(guān)系:

      直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線(xiàn),圓,圓心到l的距離為,則有;;

      (2)過(guò)圓外一點(diǎn)的切線(xiàn):k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

      (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

      設(shè)圓,

      兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

      當(dāng)時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;

      當(dāng)時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內(nèi)公切線(xiàn)一條;

      當(dāng)時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);

      當(dāng)時(shí),兩圓內(nèi)切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);

      當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

      注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)

      5、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系

      公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內(nèi).

      應(yīng)用:判斷直線(xiàn)是否在平面內(nèi)

      用符號(hào)語(yǔ)言表示公理1:

      公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)

      符號(hào):平面α和β相交,交線(xiàn)是a,記作α∩β=a.

      符號(hào)語(yǔ)言:

      公理2的作用:

      它是判定兩個(gè)平面相交的方法.

      它說(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn).

      它可以判斷點(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據(jù).

      公理3:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面.

      推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面.

      公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

      公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇5

      空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系

      異面直線(xiàn)定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)

      異面直線(xiàn)性質(zhì):既不平行,又不相交.

      異面直線(xiàn)判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不過(guò)該店的直線(xiàn)是異面直線(xiàn)

      異面直線(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角.兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直.

      求異面直線(xiàn)所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).

      (8)空間直線(xiàn)與平面之間的位置關(guān)系

      直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);αβ

      相交——有一條公共直線(xiàn).α∩β=b

      2、空間中的平行問(wèn)題

      (1)直線(xiàn)與平面平行的判定及其性質(zhì)

      線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)一條直線(xiàn)平行,則該直線(xiàn)與此平面平行.

      線(xiàn)線(xiàn)平行線(xiàn)面平行

      線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,

      那么這條直線(xiàn)和交線(xiàn)平行.線(xiàn)面平行線(xiàn)線(xiàn)平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個(gè)平面平行的判定定理

      (1)如果一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      (線(xiàn)面平行→面面平行),

      (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線(xiàn)對(duì)應(yīng)平行,那么這兩個(gè)平面平行.

      (線(xiàn)線(xiàn)平行→面面平行),

      (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,

      兩個(gè)平面平行的性質(zhì)定理

      (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線(xiàn)與另一個(gè)平面平行.(面面平行→線(xiàn)面平行)

      (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行.(面面平行→線(xiàn)線(xiàn)平行)

      3、空間中的垂直問(wèn)題

      (1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

      兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直.

      線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直.

      平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.

      (2)垂直關(guān)系的判定和性質(zhì)定理

      線(xiàn)面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面.

      性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行.

      面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直.

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面.

      4、空間角問(wèn)題

      (1)直線(xiàn)與直線(xiàn)所成的角

      兩平行直線(xiàn)所成的角:規(guī)定為.

      兩條相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角.

      兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn),形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角.

      (2)直線(xiàn)和平面所成的角

      平面的平行線(xiàn)與平面所成的角:規(guī)定為.平面的垂線(xiàn)與平面所成的角:規(guī)定為.

      平面的斜線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內(nèi)的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角.

      求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計(jì)算”.

      在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),

      在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn).

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

      求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線(xiàn)得到平面角

      垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角

      必修二知識(shí)點(diǎn)總結(jié):解三角形

      (1)正弦定理和余弦定理

      掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.

      (2)應(yīng)用

      能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題.

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇6

      1、直線(xiàn)方程形式

      一般式:Ax+By+C=0(AB≠0)

      斜截式:y=kx+b(k是斜率b是x軸截距)

      點(diǎn)斜式:y-y1=k(x-x1)(直線(xiàn)過(guò)定點(diǎn)(x1,y1))

      兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線(xiàn)過(guò)定點(diǎn)(x1,y1),(x2,y2))

      截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)

      做題過(guò)程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過(guò)渡形態(tài)。

      在與圓及圓錐曲線(xiàn)結(jié)合的過(guò)程中,還要用到點(diǎn)到直線(xiàn)距離公式。

      2、直線(xiàn)方程的局限性

      各種不同形式的直線(xiàn)方程的局限性:

      (1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線(xiàn);

      (2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線(xiàn);

      (3)截距式不能表示與坐標(biāo)軸平行或過(guò)原點(diǎn)的直線(xiàn);

      (4)直線(xiàn)方程的一般式中系數(shù)A、B不能同時(shí)為零。

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇7

      數(shù)學(xué)直線(xiàn)和圓知識(shí)點(diǎn)

      1、直線(xiàn)傾斜角與斜率的存在性及其取值范圍;直線(xiàn)方向向量的意義(或)及其直線(xiàn)方程的向量式((為直線(xiàn)的方向向量))、應(yīng)用直線(xiàn)方程的點(diǎn)斜式、斜截式設(shè)直線(xiàn)方程時(shí),一般可設(shè)直線(xiàn)的斜率為k,但你是否注意到直線(xiàn)垂直于x軸時(shí),即斜率k不存在的情況?

      2、知直線(xiàn)縱截距,常設(shè)其方程為或;知直線(xiàn)橫截距,常設(shè)其方程為(直線(xiàn)斜率k存在時(shí),為k的倒數(shù))或知直線(xiàn)過(guò)點(diǎn),常設(shè)其方程為

      (2)直線(xiàn)在坐標(biāo)軸上的截距可正、可負(fù)、也可為0、直線(xiàn)兩截距相等直線(xiàn)的斜率為-1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距互為相反數(shù)直線(xiàn)的斜率為1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距絕對(duì)值相等直線(xiàn)的斜率為或直線(xiàn)過(guò)原點(diǎn)

      (3)在解析幾何中,研究?jī)蓷l直線(xiàn)的位置關(guān)系時(shí),有可能這兩條直線(xiàn)重合,而在立體幾何中一般提到的兩條直線(xiàn)可以理解為它們不重合

      3、相交兩直線(xiàn)的夾角和兩直線(xiàn)間的到角是兩個(gè)不同的概念:夾角特指相交兩直線(xiàn)所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

      4、線(xiàn)性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解

      5、圓的方程:最簡(jiǎn)方程;標(biāo)準(zhǔn)方程;

      6、解決直線(xiàn)與圓的關(guān)系問(wèn)題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線(xiàn)長(zhǎng)定理、割線(xiàn)定理、弦切角定理等等)的作用!”

      (1)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

      過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

      過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

      如果點(diǎn)在圓外,那么上述直線(xiàn)方程表示過(guò)點(diǎn)兩切線(xiàn)上兩切點(diǎn)的“切點(diǎn)弦”方程

      如果點(diǎn)在圓內(nèi),那么上述直線(xiàn)方程表示與圓相離且垂直于(為圓心)的直線(xiàn)方程,(為圓心到直線(xiàn)的距離)

      7、曲線(xiàn)與的交點(diǎn)坐標(biāo)方程組的解;

      過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無(wú)平方項(xiàng)時(shí),為兩圓公共弦所在直線(xiàn)方程

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)篇8

      立體幾何中有4個(gè)公理:

      公理1 如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)在此平面內(nèi).

      公理2 過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面.

      公理3 如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn).

      公理4 平行于同一條直線(xiàn)的兩條直線(xiàn)平行.

      立方圖形

      立體幾何公式

      名稱(chēng) 符號(hào) 面積S 體積V

      正方體 a——邊長(zhǎng) S=6a^2 V=a^3

      長(zhǎng)方體 a——長(zhǎng) S=2(ab+ac+bc) V=abc

      b——寬

      c——高

      棱柱 S——底面積 V=Sh

      h——高

      棱錐 S——底面積 V=Sh/3

      h——高

      棱臺(tái) S1和S2——上、下底面積 V=h〔S1+S2+√(S1^2)/2〕/3

      h——高

      擬柱體 S1——上底面積 V=h(S1+S2+4S0)/6

      S2——下底面積

      S0——中截面積

      h——高

      圓柱 r——底半徑 C=2πr V=S底h=∏rh

      h——高

      C——底面周長(zhǎng)

      S底——底面積 S底=πR^2

      S側(cè)——側(cè)面積 S側(cè)=Ch

      S表——表面積 S表=Ch+2S底

      S底=πr^2

      空心圓柱 R——外圓半徑

      r——內(nèi)圓半徑

      h——高 V=πh(R^2-r^2)

      直圓錐 r——底半徑

      h——高 V=πr^2h/3

      圓臺(tái) r——上底半徑

      R——下底半徑

      h——高 V=πh(R^2+Rr+r^2)/3

      球 r——半徑

      d——直徑 V=4/3πr^3=πd^2/6

      球缺 h——球缺高

      r——球半徑

      a——球缺底半徑 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

      球臺(tái) r1和r2——球臺(tái)上、下底半徑

      h——高 V=πh[3(r12+r22)+h2]/6

      圓環(huán)體 R——環(huán)體半徑

      D——環(huán)體直徑

      r——環(huán)體截面半徑

      d——環(huán)體截面直徑 V=2π^2Rr^2 =π^2Dd^2/4

      桶狀體 D——桶腹直徑

      d——桶底直徑

      h——桶高 V=πh(2D^2+d2^)/12 (母線(xiàn)是圓弧形,圓心是桶的中心)

      V=πh(2D^2+Dd+3d^2/4)/15 (母線(xiàn)是拋物線(xiàn)形)

      平面解析幾何包含一下幾部分:

      一 直角坐標(biāo)

      1.1 有向線(xiàn)段

      1.2 直線(xiàn)上的點(diǎn)的直角坐標(biāo)

      1.3 幾個(gè)基本公式

      1.4 平面上的點(diǎn)的直角坐標(biāo)

      1.5 射影的基本原理

      1.6 幾個(gè)基本公式

      二 曲線(xiàn)與議程

      2.1 曲線(xiàn)的直解坐標(biāo)方程的定義

      2.2 已各曲線(xiàn),求它的方程

      2.3 已知曲線(xiàn)的方程,描繪曲線(xiàn)

      2.4 曲線(xiàn)的交點(diǎn)

      三 直線(xiàn)

      3.1 直線(xiàn)的傾斜角和斜率

      3.2 直線(xiàn)的方程

      Y=kx+b

      3.3 直線(xiàn)到點(diǎn)的有向距離

      3.4 二元一次不等式表示的平面區(qū)域

      3.5 兩條直線(xiàn)的相關(guān)位置

      3.6 二元二方程表示兩條直線(xiàn)的條件

      3.7 三條直線(xiàn)的相關(guān)位置

      3.8 直線(xiàn)系

      四 圓

      4.1 圓的定義

      4.2 圓的方程

      4.3 點(diǎn)和圓的相關(guān)位置

      4.4 圓的切線(xiàn)

      4.5 點(diǎn)關(guān)于圓的切點(diǎn)弦與極線(xiàn)

      4.6 共軸圓系

      4.7 平面上的反演變換

      五 橢圓

      5.1 橢圓的定義

      5.2 用平面截直圓錐面可以得到橢圓

      5.3 橢圓的標(biāo)準(zhǔn)方程

      5.4 橢圓的基本性質(zhì)及有關(guān)概念

      5.5 點(diǎn)和橢圓的相關(guān)位置

      5.6 橢圓的切線(xiàn)與法線(xiàn)

      5.7 點(diǎn)關(guān)于橢圓的切點(diǎn)弦與極線(xiàn)

      5.8 橢圓的面積

      六 雙曲線(xiàn)

      6.1 雙曲線(xiàn)的定義

      6.2 用平面截直圓錐面可以得到雙曲線(xiàn)

      6.3 雙曲線(xiàn)的標(biāo)準(zhǔn)方程

      6.4 雙曲線(xiàn)的基本性質(zhì)及有關(guān)概念

      6.5 等軸雙曲線(xiàn)

      6.6 共軛雙曲線(xiàn)

      6.7 點(diǎn)和雙曲線(xiàn)的相關(guān)位置

      6.8 雙曲線(xiàn)的切線(xiàn)與法線(xiàn)

      6.9 點(diǎn)關(guān)于雙曲線(xiàn)的切點(diǎn)弦與極線(xiàn)

      七 拋物線(xiàn)

      7.1 拋物線(xiàn)的定義

      7.2 用平面截直圓錐面可以得到拋物線(xiàn)

      7.3 拋物線(xiàn)的標(biāo)準(zhǔn)方程

      7.4 拋物線(xiàn)的基本性質(zhì)及有關(guān)概念

      7.5 點(diǎn)和拋物線(xiàn)的相關(guān)位置

      7.6 拋物線(xiàn)的切線(xiàn)與法線(xiàn)

      7.7 點(diǎn)關(guān)于拋物線(xiàn)的切點(diǎn)弦與極線(xiàn)

      7.8 拋物線(xiàn)弓形的面積

      八 坐標(biāo)變換·二次曲線(xiàn)的一般理論

      8.1 坐標(biāo)變換的概念

      8.2 坐標(biāo)軸的平移

      8.3 利用平移化簡(jiǎn)曲線(xiàn)方程

      8.4 圓錐曲線(xiàn)的更一般的標(biāo)準(zhǔn)方程

      8.5 坐標(biāo)軸的旋轉(zhuǎn)

      8.6 坐標(biāo)變換的一般公式

      8.7 曲線(xiàn)的分類(lèi)

      8.8 二次曲線(xiàn)在直角坐標(biāo)變換下的不變量

      8.9 二元二次方程的曲線(xiàn)

      8.10 二次曲線(xiàn)方程的化簡(jiǎn)

      8.11 確定一條二次曲線(xiàn)的條件

      8.12 二次曲線(xiàn)系

      九 參數(shù)方程

      十 極坐標(biāo)

      十一 斜角坐標(biāo)

      蘇教版高中必修二數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章

      2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      蘇教版高一數(shù)學(xué)必修知識(shí)點(diǎn)梳理2022

      高中數(shù)學(xué)填空題的常用解題方法與必修二知識(shí)點(diǎn)全面總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)蘇教版

      高一數(shù)學(xué)必修2知識(shí)總結(jié)

      蘇教版高一數(shù)學(xué)知識(shí)點(diǎn)

      2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)歸納最新

      高中數(shù)學(xué)必修2空間幾何體知識(shí)點(diǎn)歸納總結(jié)

      高一數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)

      蘇教版初二數(shù)學(xué)知識(shí)點(diǎn)大全

      915625