精品丰满熟女一区二区三区_五月天亚洲欧美综合网_亚洲青青青在线观看_国产一区二区精选

  • <menu id="29e66"></menu>

    <bdo id="29e66"><mark id="29e66"><legend id="29e66"></legend></mark></bdo>

  • <pre id="29e66"><tt id="29e66"><rt id="29e66"></rt></tt></pre>

      <label id="29e66"></label><address id="29e66"><mark id="29e66"><strike id="29e66"></strike></mark></address>
      學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 > 高一數(shù)學必背知識點總結(jié)

      高一數(shù)學必背知識點總結(jié)

      時間: 楚琪0 分享

      高一數(shù)學必背知識點總結(jié)2022

      高一新生要作好充分思想準備,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀律制度。下面是小編給大家?guī)淼母咭粩?shù)學必背知識點總結(jié),以供大家參考!

      高一數(shù)學必背知識點總結(jié)

      一、函數(shù)的概念與表示

      1、映射

      (1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

      注意點:(1)對映射定義的理解。(2)判斷一個對應(yīng)是映射的方法。一對多不是映射,多對一是映射

      2、函數(shù)

      構(gòu)成函數(shù)概念的三要素

      ①定義域②對應(yīng)法則③值域

      兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

      二、函數(shù)的解析式與定義域

      1、求函數(shù)定義域的主要依據(jù):

      (1)分式的分母不為零;

      (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

      (3)對數(shù)函數(shù)的真數(shù)必須大于零;

      (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      三、函數(shù)的值域

      1求函數(shù)值域的方法

      ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

      ②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

      ③判別式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

      ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

      ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

      ⑥圖象法:二次函數(shù)必畫草圖求其值域;

      ⑦利用對號函數(shù)

      ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

      四.函數(shù)的奇偶性

      1.定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

      如果對于任意∈A,都有,則稱y=f(x)為奇

      函數(shù)。

      2.性質(zhì):

      ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點對稱,

      ②若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(0)=0

      ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點對稱]

      3.奇偶性的判斷

      ①看定義域是否關(guān)于原點對稱②看f(x)與f(-x)的關(guān)系

      五、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義:

      2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

      高一數(shù)學知識點小結(jié)人教版

      1.等比數(shù)列的有關(guān)概念

      (1)定義:

      如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_q為非零常數(shù)).

      (2)等比中項:

      如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項?a,G,b成等比數(shù)列?G2=ab.

      2.等比數(shù)列的有關(guān)公式

      (1)通項公式:an=a1qn-1.

      3.等比數(shù)列{an}的`常用性質(zhì)

      (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.

      特別地,a1an=a2an-1=a3an-2=….

      (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

      4.等比數(shù)列的特征

      (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的,公比q也是非零常數(shù).

      (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

      5.等比數(shù)列的前n項和Sn

      (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

      (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

      高一必修一數(shù)學知識點總結(jié)

      指數(shù)函數(shù)

      (一)指數(shù)與指數(shù)冪的運算

      1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

      當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

      當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

      注意:當是奇數(shù)時,當是偶數(shù)時,

      2.分數(shù)指數(shù)冪

      正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

      0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

      指出:規(guī)定了分數(shù)指數(shù)冪的.意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

      3.實數(shù)指數(shù)冪的運算性質(zhì)

      (二)指數(shù)函數(shù)及其性質(zhì)

      1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

      注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

      2、指數(shù)函數(shù)的圖象和性質(zhì)

      高一數(shù)學必背知識點總結(jié)相關(guān)文章:

      高一數(shù)學必背公式及知識匯總

      高一數(shù)學必背知識點

      高一數(shù)學必修一基本初等函數(shù)知識點總結(jié)

      高一數(shù)學必記知識點概括

      高中數(shù)學必考知識點歸納

      高一數(shù)學必修一函數(shù)必背知識點整理

      高一數(shù)學必修的必會知識難點歸納

      高一數(shù)學的單元及必修知識點歸納

      高一數(shù)學知識點總結(jié)

      高中數(shù)學知識點全總結(jié)

      1350305